A new permanent magnetic friction damper device for passive energy dissipation

2014 ◽  
Vol 23 (10) ◽  
pp. 105016 ◽  
Author(s):  
Hongzhe Dai ◽  
Zuojian Huang ◽  
Wei Wang
Author(s):  
Ian D. Aiken ◽  
Douglas K. Nims ◽  
James M. Kelly

Passive energy dissipation devices have the potential to increase the seismic resistance of a structure by increasing its capability to dissipate energy and by reducing the seismic demand on the structure. They offer particular promise for seismic retrofitting as well as extensive applications in new construction. This paper describes and compares earthquake simulator tests of four new types of passive energy dissipators that were performed at the Earthquake Engineering Research Center of the University of California at Berkeley. The four types of energy dissipator are a Coulomb friction damper; a self-centering friction device in which the slip load is proportional to the slip displacement; a viscoelastic shear damper; and a shape memory alloy. Two different model structures were used in the experimental studies, and the energy dissipators were incorporated as part of the bracing systems of the structures.


2015 ◽  
Vol 42 (4) ◽  
pp. 277-289
Author(s):  
Miodrag Zigic ◽  
Nenad Grahovac

We study the seismic response of two adjacent structures connected with a dry friction damper. Each of them consists of a viscoelastic rod and a rigid block, which can slide without friction along the moving base. A simplified earthquake model is used for modeling the horizontal ground motion. Energy dissipation is taken by the presence of the friction damper, which is modeled by the set-valued Coulomb friction law. Deformation of viscoelastic rods during the relative motion of the blocks represents another way of energy dissipation. The constitutive equation of a viscoelastic body is described by the fractional Zener model, which includes fractional derivatives of stress and strain. The problem merges fractional derivatives as non-local operators and theory of set-valued functions as the non-smooth ones. Dynamical behaviour of the problem is governed by a pair of coupled multi-valued differential equations. The posed Cauchy problem is solved by use of the Gr?nwald-Letnikov numerical scheme. The behaviour of the system is analyzed for different values of system parameters.


Sign in / Sign up

Export Citation Format

Share Document