friction damper
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 109)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 107754632110495
Author(s):  
ZhaoYuan Yao ◽  
JunGuo Wang ◽  
YongXiang Zhao

In this study, an innovative modeling approach is put forward to research the effect of eccentricity on the nonlinear dynamical behaviors of geared-bearing system. This refined model contains the rigid body of the rotor-bearing system and separated gear teeth which are considered as individual bodies elastically attached to the gear hub with revolute joints. The internal and external excitations of the proposed model include torsional joint stiffness, roll bearing forces, friction between gear pair, gear eccentricity, and so on. The systematic procedure for the calculation of torsional joint stiffness, bearing forces and friction coefficient considering elastohydrodynamic is also conducted. After that, the influence of eccentricity on nonlinear dynamic characteristics of the geared transmission system is analyzed. To avoid the system moving in the unstable motion state, a dry friction damper controller is designed to control the nonlinear behaviors simulated on the basis of above model. The linear feedback and periodic excitation non-feedback control strategies are, respectively, selected to design the actuator. It is indicated that undesirable behaviors of the geared transmission system can be avoided effectively by applying the proposed control method.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 968-989
Author(s):  
Ai Qi ◽  
Xuhong Liu ◽  
Rongjian Xu ◽  
Xueyuan Yan

2022 ◽  
Vol 250 ◽  
pp. 113407
Author(s):  
Canxing Qiu ◽  
Jiawang Liu ◽  
Xiuli Du

2021 ◽  
Vol 11 (22) ◽  
pp. 10985
Author(s):  
Duy Thao Nguyen ◽  
Duy Hung Vo ◽  
Md. Naimul Haque

Stay cables are one of the vital components of a cable-stayed bridge. Due to their flexible nature, stay cables are vulnerable to external excitation and often vibrate with large amplitude under wind action which leads to the fatigue failure of the cables. To suppress such kind of large amplitude vibration by improving the damping ratio of the cable various dampers such as magnetorheological damper, friction damper; oil damper; or high damping rubber (HDR) damper are utilized and gained popularity over time. This paper focuses on improving the damping ratio of stay cables using a combination of two HDR dampers. First, the theoretical model is formulated considering cable bending stiffness to evaluate the damping effect of cable-HDR dampers system. Then, the impact of various design parameters of HDR dampers on cable damping considering the cable stiffness is performed. The comparative analysis of results shows that the considered parameters such as loss factor, spring factor, and installation location of dampers have much effect on the stay cables damping ratio. Finally, the optimal parameters of the two HDR dampers are proposed for damper design.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 536
Author(s):  
Seokjae Heo ◽  
Seunguk Na ◽  
Moo-Won Hur ◽  
Sanghyun Lee

In this study, the shape of a vertical expansion module with a rotary-type damping device is proposed. The external energy dissipation capacity is confirmed through experiments and the performance of the module is simulated. It can be easily applied to high-rise structures, as the module is directly supported by the bearing walls without the need for a separate base system. Additionally, as the damper can be replaced, it is possible to enhance seismic performance even after construction. The simulation results show that the rotary-type damper is more effective in reducing the displacement, shear force, and moment than free and fixed joints. In the pushover analysis of a system modeled using the moment hinge of the rotary damper of the joint, the best response reduction effect is obtained when the yield moment of the hinge is defined as 1% of the frame plastic moment. As a result of the analysis of the multi-degree-of-freedom system considering a harmonic load, we determined that it is efficient for the hinge to yield after the displacement, and the acceleration response of the resonant structure reaches steady state during the installation. In the multi-degree-of-freedom system with slab joints added to the analytical model, the displacement response decreased gradually as the natural period of the structure decreased and the joint increased. This provides evidence that the damper does not affect the overall behavior of the structure. The most important design factor of the rotary-type friction damper, shown through the experiment, is the relationship between the frictional surface and the tightening force of the bolt.


Author(s):  
Bashar Iqbal

Abstract: The requirement of tall building in recent years increase the construction to satisfy the need of human beings. Very tall buildings located in high velocity wind area are highly sensitive therefore calculation and analysis of wind load is very impotent. Due to change in climatic condition the basic wind speed are increases. The main aim of this paper is to introducing the different techniques which is used to reduce the effect of wind load or lateral loads. Keywords: wind analysis, comparative analysis, TMD (tuned mass damper),friction damper, shear wall


Sign in / Sign up

Export Citation Format

Share Document