motion mechanism
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 57)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sandra Heckel ◽  
Clemens Bilsing ◽  
Martin Wittmann ◽  
Thomas Gemming ◽  
Lars Büttner ◽  
...  

Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches such as irregular particle shapes, local excitation or intrinsic asymmetry are on the rise to facilitate manufacturing, but the effects on the generation of motion remain poorly understood. In this work, single crystalline BiVO4 microswimmers are presented that rely on a strict inherent asymmetry of charge-carrier distribution under illumination. The origin of the asymmetrical flow pattern is elucidated becauseof the high spatial resolution of measured flow fields around pinned BiVO4 colloids. As a result the flow from oxidative to reductive particle sides was confirmed. Distribution of oxidation and reduction reactions suggests a dominant self-electrophoretic motion mechanism with a source quadrupole as the origin of the induced flows. It is shown that the symmetry of the flow fields is broken by self-shadowing of the particles and synthetic surface defects that impact the photocatalytic activity of the microswimmers. The results demonstrate the complexity of symmetry breaking in nonspherical microswimmers and are leading the way towards understanding ofpropulsion mechanisms of phoretic colloids of various shapes.


2021 ◽  
Vol 160 ◽  
pp. 107942
Author(s):  
Teng Wang ◽  
Guorong Wang ◽  
Liming Dai ◽  
Linyan Chen ◽  
Shunzuo Qiu ◽  
...  

2021 ◽  
Vol 2085 (1) ◽  
pp. 012016
Author(s):  
Shuo Pan ◽  
Xinjie Shao

Abstract Aiming at the problem of 3D measurement of the inner surface of pipe, this paper develops a new structure of pipe inspection device inside the pipe based on the principle of laser triangulation. The device is composed of motion mechanism and image acquisition system. The three-dimensional shape of the inner surface is reconstructed the image pixel offset. The detection device driven by the motion mechanism can realize the automatic detection of different positions. The experiment shows the steps of the three-dimensional measurement of the inner surface of the pipe, verifies the feasibility of this method.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xinyu Quan ◽  
Ximing Zhao ◽  
Shijie Zhang ◽  
Jie Zhou ◽  
Nan Yu ◽  
...  

The seahorse relies on the undulatory motion of the dorsal fin to generate thrust, which makes it possess quite high maneuverability and efficiency, and due to its low volume of the dorsal fin, it is conducive to the study of miniaturization of the driving mechanism. This paper carried out a study on the undulatory motion mechanism of the seahorse’s dorsal fin and proposed a dynamic model of the interaction between the seahorse’s dorsal fin and seawater based on the hydrodynamic properties of seawater and the theory of fluid-structure coupling. A simulation model was established using the Fluent software, and the 3D fluid dynamic mesh was used to study the undulatory motion mechanism of the seahorse’s dorsal fin. The effect of the swing frequency, amplitude, and wavelength of the seahorse’s dorsal fin on its propulsion performance was studied. On this basis, an optimized design method was used to design a bionic seahorse’s dorsal fin undulatory motion mechanism. The paper has important guiding significance for the research and miniaturization of new underwater vehicles.


2021 ◽  
pp. 1-11
Author(s):  
Genliang Chen ◽  
Yuanhao Xun ◽  
Yuchen Chai ◽  
Siyue Yao ◽  
Chao Chen ◽  
...  

Abstract Benefiting from small incision and fast recovery, minimally invasive surgeries (MIS) exhibit great advantages in clinical operations. In such kind of surgeries, the remote center-of-motion (RCM) mechanisms play an important role owing to their special motion characteristics. This paper presents the design of a novel planar RCM mechanism of two rotational and one translational degrees-of-freedom. In the proposed design, the mobility of RCM mechanisms is decomposed into one-DOF pure rotation and translation with a remote stationary point. The dual-triangular linkage and the Peaucellier-Lipkin straight-line linkage are introduced to achieve the remote rotation and translation, respectively. Inspired by the concept of virtual screw, a dual-helical differential-motion joint is particularly designed to generate the coaxial rotation and translation. A preliminary prototype is developed to validate the feasibility of the designed RCM mechanism. The experimental results show that the developed prototype is easy to control and of acceptable positioning accuracy, which manifests potential application in MIS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaojing Feng ◽  
Bin Cui ◽  
Yaxiong Liu ◽  
Lianggang Li ◽  
Xiaojun Shi ◽  
...  

Purpose The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by flat-layered additive manufacturing process. Design/methodology/approach This paper proposes a curved-layered material extrusion modeling process with a five-axis motion mechanism. This process has advantages of the platform rotating, non-support printing and three-dimensional printing path. First, the authors present a curved-layered algorithm by offsetting the bottom surface into a series of conformal surfaces and a toolpath generation algorithm based on the geodesic distance field in each conformal surface. Second, they introduce a parallel five-axis printing machine consisting of a printing head fixed on a delta-type manipulator and a rotary platform on a spherical parallel machine. Findings Mechanical experiments show the failure force of the five-axis printed samples is 153% higher than that of the three-axis printed samples. Forming experiments show that the surface roughness significantly decreases from 42.09 to 18.31 µm, and in addition, the material consumption reduces by 42.90%. These data indicate the curved-layered algorithm and five-axis motion mechanism in this paper could effectively improve mechanical properties and the surface roughness of thin-walled parts, and realize non-support printing. These methods also have reference value for other additive manufacturing processes. Originality/value Previous researchers mostly focus on printing simple shapes such as arch or “T”-like shape. In contrast, this study sets out to explore the algorithm and benefits of modeling thin-walled parts by a five-axis machine. Several validated models would allow comparability in five-axis printing.


2021 ◽  
Vol XXIV (1) ◽  
pp. 48-53
Author(s):  
MARCU Oana

The present study gives a Computational Fluid Dynamics (CFD) based insight into the three-dimensional incident flow developed around a very large crude carrier ship during static drift motion. The research proposes a set of virtual Planar Motion Mechanism (PMM) tests of “static drift” type conducted for a number of seven drift angles in the range of -9o to +9o . The emergence and development of vortical structures along the 1:58 KRISO Very Large Crude Carrier 2 (KVLCC2) tanker model are examined and explained, the influence of the considered drift angles being highlighted.


2021 ◽  
Author(s):  
Chengqian Ma ◽  
Ning Ma ◽  
Xiechong Gu

Abstract The benchmark experiment research for the maneuverability of a small-scaled ship model is critical for investigating the scaled effect on the maneuvering hydrodynamic derivatives, and validating the CFD technology. Till now, there is little research on the benchmark study and uncertainty analysis for the small-scaled ship which is frequently used in the Circulating Water Channel (CWC). Therefore, an experimental study of the planar motion mechanism (PMM) tests is performed in the CWC of the SJTU. The PMM tests performed in the CWC can avoid some disadvantages of those in the towing tank, such as the limitations on the acquisition time and frequency due to the size of the towing tank, interference of the carriage on the signal acquisition. In addition, the flow field visualization for the tests in the CWC is easier to achieve compared with the experiments in the towing tank, which helps the scholars to understand the characteristic of the wake field during maneuvers. The benchmark ship is the KVLCC2 with a scaled ratio of 1/128.77. The hull forces are recorded and processed to obtain the maneuvering hydrodynamic derivatives. To assess the quality of the acquired data, randomness analysis, stationarity analysis, normality analysis, and statistical convergence are performed for the PMM tests in the CWC for the first time. Finally, the uncertainty analysis (UA) method for the PMM tests performed in the CWC is also developed.


Sign in / Sign up

Export Citation Format

Share Document