Analysis of Arc Characteristics and Flow Field in Arc Chamber of High-Voltage SF6Auto-Expansion Circuit Breaker

2008 ◽  
Vol 10 (5) ◽  
pp. 594-599 ◽  
Author(s):  
Zhang Junmin ◽  
Chen Zhang
2017 ◽  
Vol 4 (1) ◽  
pp. 95-98
Author(s):  
Z. Guo ◽  
X. Li ◽  
Y. Zhang ◽  
X. Guo ◽  
J. Xiong

CO<sub>2</sub> is identified as a promising alternative gas of SF<sub>6</sub>. The magnetohydrodynamics (MHD) arc model is established for a CO<sub>2</sub> circuit breaker. The influence of gas pressure is studied. The simulations are carried out for 0.5 MPa, 0.7 MPa and 0.9 MPa absolute filling pressure, allowing predictions of pressure and temperature distributions. The arc time constant θ and the power loss coefficient <em>Q</em> is extracted. The thermal interruption capability is estimated to grow with increasing filling pressure.


2006 ◽  
Vol 45 (12) ◽  
pp. 9247-9253 ◽  
Author(s):  
Hi Jun Choe ◽  
Mu-Young Ahn ◽  
Ki Dong Song ◽  
Kyong-Yop Park ◽  
Seong-Kwan Park

1988 ◽  
Vol 135 (3) ◽  
pp. 219
Author(s):  
G. Bernard ◽  
G. Perrissin ◽  
J. Marzocca

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Sign in / Sign up

Export Citation Format

Share Document