Characteristic functional structure of infinitesimal symmetry transformations of Birkhoffian systems

2004 ◽  
Vol 13 (7) ◽  
pp. 979-983 ◽  
Author(s):  
Gu Shu-Long ◽  
Zhang Hong-Bin
2011 ◽  
Vol 26 (19) ◽  
pp. 3249-3258 ◽  
Author(s):  
NAOKI SASAKURA

Tensor models are generalization of matrix models, and are studied as models of quantum gravity. It is shown that the symmetry of the rank-three tensor models is generated by a hierarchy of n-ary algebras starting from the usual commutator, and the 3-ary algebra symmetry reported in the previous paper is just a single sector of the whole structure. The condition for the Leibnitz rules of the n-ary algebras is discussed from the perspective of the invariance of the underlying algebra under the n-ary transformations. It is shown that the n-ary transformations which keep the underlying algebraic structure invariant form closed finite n-ary Lie subalgebras. It is also shown that, in physical settings, the 3-ary transformation practically generates only local infinitesimal symmetry transformations, and the other more nonlocal infinitesimal symmetry transformations of the tensor models are generated by higher n-ary transformations.


Sign in / Sign up

Export Citation Format

Share Document