scholarly journals TENSOR MODELS AND HIERARCHY OF n-ARY ALGEBRAS

2011 ◽  
Vol 26 (19) ◽  
pp. 3249-3258 ◽  
Author(s):  
NAOKI SASAKURA

Tensor models are generalization of matrix models, and are studied as models of quantum gravity. It is shown that the symmetry of the rank-three tensor models is generated by a hierarchy of n-ary algebras starting from the usual commutator, and the 3-ary algebra symmetry reported in the previous paper is just a single sector of the whole structure. The condition for the Leibnitz rules of the n-ary algebras is discussed from the perspective of the invariance of the underlying algebra under the n-ary transformations. It is shown that the n-ary transformations which keep the underlying algebraic structure invariant form closed finite n-ary Lie subalgebras. It is also shown that, in physical settings, the 3-ary transformation practically generates only local infinitesimal symmetry transformations, and the other more nonlocal infinitesimal symmetry transformations of the tensor models are generated by higher n-ary transformations.

2010 ◽  
Vol 25 (23) ◽  
pp. 4475-4492 ◽  
Author(s):  
NAOKI SASAKURA

Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian configurations are parametrized by a scalar and a symmetric two-tensor, it is argued that, in general situations, the infrared dynamics of the tensor models should be described by scalar-tensor theories of gravity.


Author(s):  
Dianzhen Cui ◽  
Tao Li ◽  
Jianning Li ◽  
Xuexi Yi

Abstract Models of quantum gravity imply a modification of the canonical position-momentum commutation relations. In this manuscript, working with a binary mechanical system, we examine the effect of quantum gravity on the exceptional points of the system. On the one side, we find that the exceedingly weak effect of quantum gravity can be sensed via pushing the system towards a second-order exceptional point, where the spectra of the non-Hermitian system exhibits non-analytic and even discontinuous behavior. On the other side, the gravity perturbation will affect the sensitivity of the system to deposition mass. In order to further enhance the sensitivity of the system to quantum gravity, we extend the system to the other one which has a third-order exceptional point. Our work provides a feasible way to use exceptional points as a new tool to explore the effect of quantum gravity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alicia Castro ◽  
Tim Andreas Koslowski

This contribution is not intended as a review but, by suggestion of the editors, as a glimpse ahead into the realm of dually weighted tensor models for quantum gravity. This class of models allows one to consider a wider class of quantum gravity models, in particular one can formulate state sum models of spacetime with an intrinsic notion of foliation. The simplest one of these models is the one proposed by Benedetti and Henson [1], which is a matrix model formulation of two-dimensional Causal Dynamical Triangulations (CDT). In this paper we apply the Functional Renormalization Group Equation (FRGE) to the Benedetti-Henson model with the purpose of investigating the possible continuum limits of this class of models. Possible continuum limits appear in this FRGE approach as fixed points of the renormalization group flow where the size of the matrix acts as the renormalization scale. Considering very small truncations, we find fixed points that are compatible with analytically known results for CDT in two dimensions. By studying the scheme dependence of our results we find that precision results require larger truncations than the ones considered in the present work. We conclude that our work suggests that the FRGE is a useful exploratory tool for dually weighted matrix models. We thus expect that the FRGE will be a useful exploratory tool for the investigation of dually weighted tensor models for CDT in higher dimensions.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


2005 ◽  
Author(s):  
Fermin Viniegra ◽  
Michael J. Peardon ◽  
Sinead Ryan

2017 ◽  
Vol 32 (31) ◽  
pp. 1750180
Author(s):  
Badis Ydri ◽  
Cherine Soudani ◽  
Ahlam Rouag

We present a new model of quantum gravity as a theory of random geometries given explicitly in terms of a multitrace matrix model. This is a generalization of the usual discretized random surfaces of two-dimensional quantum gravity which works away from two dimensions and captures a large class of spaces admitting a finite spectral triple. These multitrace matrix models sustain emergent geometry as well as growing dimensions and topology change.


2021 ◽  
pp. 166-177
Author(s):  
Adrian Tanasa

After a brief presentation of random matrices as a random surface QFT approach to 2D quantum gravity, we focus on two crucial mathematical physics results: the implementation of the large N limit (N being here the size of the matrix) and of the double-scaling mechanism for matrix models. It is worth emphasizing that, in the large N limit, it is the planar surfaces which dominate. In the third section of the chapter we introduce tensor models, seen as a natural generalization, in dimension higher than two, of matrix models. The last section of the chapter presents a potential generalisation of the Bollobás–Riordan polynomial for tensor graphs (which are the Feynman graphs of the perturbative expansion of QFT tensor models).


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Astrid Eichhorn ◽  
Johannes Lumma ◽  
Antonio D. Pereira ◽  
Arslan Sikandar

Sign in / Sign up

Export Citation Format

Share Document