Exploring the non-linear oscillation of a rigid sphere on an elastic half-space

Author(s):  
Stylianos - Vasileios Kontomaris ◽  
Anna Malamou
Author(s):  
O. I. Zhupanska

The problem of normal contact with friction of a rigid sphere with an elastic half-space is considered. An analytical treatment of the problem is presented, with the corresponding boundary-value problem formulated in the toroidal coordinates. A general solution in the form of Papkovich–Neuber functions and the Mehler–Fock integral transform is used to reduce the problem to a single integral equation with respect to the unknown contact pressure in the slip zone. An analysis of contact stresses is carried out, and exact analytical solutions are obtained in limiting cases, including a full stick contact problem and a contact problem for an incompressible half-space.


2021 ◽  
Author(s):  
Stylianos - Vasileios Kontomaris ◽  
Anna Malamou

Abstract Exploring non-linear oscillations is a challenging task since the related differential equations cannot be directly solved in terms of elementary functions. Thus, complicated mathematical or numerical methods are usually employed to find accurate or approximate expressions that describe the behavior of the system with respect to time. In this paper, the vertical oscillations of an object under the influence of its weight and an opposite force with magnitude F=cyn, where n>0 are being explored. Accurate and approximate simple solutions regarding the object’s position with respect to time are presented and the dependence of the oscillation’s period from the oscillation’s range of displacements and the exponent n is revealed. In addition, the special case in which n=3/2 (which describes the oscillation of a rigid sphere on an elastic half space) is also highlighted. Lastly, it is shown that similar cases (such as the case of a force with magnitude F=kx+λx2) can be also treated using the same approach.


1986 ◽  
Vol 22 (5) ◽  
pp. 403-409 ◽  
Author(s):  
Yu. A. Rossikhin

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
L. M. Brock

A neo-Hookean half-space, in equilibrium under uniform Cauchy stress, undergoes contact by a sliding rigid ellipsoid or a rolling rigid sphere. Sliding is resisted by friction, and sliding or rolling speed is subcritical. It is assumed that a dynamic steady state is achieved and that deformation induced by contact is infinitesimal. Transform methods, modified by introduction of quasi-polar coordinates, are used to obtain classical singular integral equations for this deformation. Assumptions of specific contact zone shape are not required. Signorini conditions and the requirement that resultant compressive load is stationary with respect to contact zone stress give an equation for any contact zone span in terms of a reference value and an algebraic formula for the latter. Calculations show that prestress can significantly alter the ratio of spans parallel and normal to the direction of die travel, an effect enhanced by increasing die speed.


1995 ◽  
Vol 30 (6) ◽  
pp. 861-877 ◽  
Author(s):  
Alexey V. Porubov ◽  
Alexander M. Samsonov

Sign in / Sign up

Export Citation Format

Share Document