compressive load
Recently Published Documents





Sumeet Sivadas

Abstract: Connecting Rods are an important and irreplaceable part of IC Engines. It is responsible for converting the reciprocating motion of the piston into the rotary motion of the crankshaft. During this process, the connecting rod is subjected to various loads. Therefore, the materials used for connecting rod are also very important. In this paper, a static structural analysis of a connecting rod made of 5 different materials: Forged Steel, Carbon Steel, Stainless Steel, Grey Cast Iron and Titanium Alloy are compared. The connecting rod is analyzed only for the axial compressive load and not the axial tensile load because the tensile load is very much lesser than the compressive load. The connecting rod’s model is developed in FUSION 360 software and then imported to and analyzed using Finite Element Method in the ANSYS 2021 WORKBENCH software. The equivalent stress, total deformation along with the factor of safety for all the materials is found and compared in the analysis and all the results are shown with the help of images and graphs. Keywords: Connecting Rod, FEA, ANSYS WORKBENCH, Structural Analysis, Forged Steel, Carbon Steel, Stainless Steel, Grey Cast Iron, Titanium Alloy.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0262054
Hongming Cheng ◽  
Xiaobin Yang ◽  
Zewen Zhang ◽  
Wenlong Li ◽  
Zhangxuan Ning

The stress-induced microcrack evolution in rock specimens causes a series of physical changes and heterogeneous deformations. Some of these attributes (such as sound, electricity, heat, etc.) have been effectively used to identify the damage state and precursory information of the rock specimens. However, the strain-field heterogeneity has not been investigated previously. In this study, the relationship of the strain-field heterogeneity and damage evolution of three sandstone specimens under the uniaxial compressive load was analyzed statistically. The acoustic emission (AE) and two-dimensional digital image correlation were employed for real-time evaluation of the AE parameters and strain-field heterogeneity. The results showed that the strain-field heterogeneity was closely related to the rock damage that amplified with the applied stress, and exhibited two features; numerical difference and spatial concentration. Subsequently, these two features were characterized by the two proposed heterogeneous quantitative indicators (i.e., the degree and space heterogeneities). Further, their four transition processes were in agreement with the damage stages confirmed by AE parameters: a relatively constant trend; growth with a relatively constant rate; drastic increase trend; and increase with a high rate to maximum value. Moreover, a time sequence chain for damage precursor was built, where the heterogeneous quantitative indicators and AE parameters differed in sensitivity to microcrack development and can be used as a damage warning at the varying magnitude of the external load.

Nayyer Mohammadi Rana ◽  
Elham Ghandi ◽  
Shirin Esmaeili Niari

In recent years, the use of partially concrete-filled steel tubular (PCFST) columns has been considered due to their cost-effectiveness and reduction of structural weight in bridge piers and building columns. One of the critical discussions about these columns is their impact resistance. In this article, the dynamic response of hollow and PCFST columns with elliptical cross-section under simultaneous loading of static axial compressive load and lateral impact load is presented using finite element modeling in ABAQUS software (FEA). To ensure the accuracy of the numerical modeling, the analysis results are compared with the results of previous works. The effects of different parameters such as impact velocity, the height of the impact location, the impact direction, the impact block mass, the size and shape of the impact block are investigated in this paper. The results of the numerical analysis showed that the partially filled specimens had better performance than the hollow specimens. The changes in impact direction and impact block mass parameters have a significant effect on the failure of the columns, especially when they are under high impact velocity. Changing the impact velocity significantly affects the impact resistance of specimens. However, the size and shape of the impact block did not have a significant effect on the displacement of the column against the impact loading.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Huynh-Xuan Tin ◽  
Ngo-Thanh Thuy ◽  
Soo-Yeon Seo

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load. In this manner, an experimental investigation was carried out to assess the performance of rectangular RC column with different patterns of CFRP-wrap subject to eccentric loads in this paper. The experiment consists of fourteen mid-scale rectangular RC columns of 200 mm × 200 mm × 800 mm, including five controlled columns and nine CFRP-strengthened ones. All CFRP-strengthened columns were reinforced with one layer of vertical CFRP sheet with the main fiber along the axial axis at four sides, then divided into three groups according to confinement purpose, namely unconfined, partially CFRP-confined, and fully CFRP-confined group. Two loading conditions, namely uniaxially and biaxially eccentric loads, are considered as one of the test parameters. From the test of uniaxial eccentric load, partial and full CFRP-wraps provided 19% and 33% increased load-carrying capacity at an eccentricity-to-column thickness ratio (e/h) of 0.125, respectively, compared to controlled columns, and 8% and 11% at e/h = 0.25, respectively. For the partially CFRP-confined columns subjected to biaxial eccentric load with e/h = 0.125 and 0.25, the load-carrying capacities were improved by 19% and 31%, respectively. This means that the partial confinement with CFRP effectively improves the load-carrying capacity at larger biaxial eccentric load. It was found that the load-carrying capacity could be properly predicted by using code equations of ACI 440.2R-17 and Fib Bulletin 14 Guideline for the full CFRP-confined or partially CFRP-confined columns under uniaxial load. For partially CFRP-confined columns under biaxial loading, however, the safety factors using the Fib calculation process were 20% to 31% lower than that of uniaxially loaded columns.

2021 ◽  
Vol 156 (A4) ◽  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.

D Chichì ◽  
Y Garbatov

The objective of the present study is to investigate the possibility to recover the ultimate strength of a rectangular steel plate with a manhole shape opening subjected to a uniaxial compressive load and non-uniform corrosion degradation reinforced by additional stiffeners. Finite element analyses have been carried out to verify the possible design solutions. A total of four finite element models are generated, including 63 sub-structured models. The non-uniform corrosion has been generated by the Monte Carlo simulation. The reinforcement process covers three scenarios that include mounting of two longitudinal stiffeners, two longitudinal and two transverse stiffeners and the flange on the opening. The positioning of the stiffeners has also been studied. A total of 10 cases has been selected and tested for the numerical experiment. Three different assessments have been performed to evaluate the ultimate strength, weight and cost. Two additional studies on the effect of the plate thickness and slenderness have been also carried out.

Evgenii Riabokon ◽  
Vladimir Poplygin ◽  
Mikhail Turbakov ◽  
Evgenii Kozhevnikov ◽  
Dmitrii Kobiakov ◽  

AbstractYoung’s modulus of New Red Sandstone was investigated experimentally to gain insight into its nonlinear nature. A large experimental programme was carried out by applying a controllable quasi-static and dynamic uniaxial loading to 286 dry sandstone samples of four different sizes. The static and dynamic tests, similar to those aiming at determining the uniaxial compressive strength, were conducted using the state-of-the-art experimental facilities at the University of Aberdeen including a custom-built small experimental rig for inducing a dynamic uniaxial compressive load via a piezoelectric transducer. The obtained results have confirmed a complex nature of Young’s modulus of sandstone. Specifically, under a harmonic dynamic loading, it shows strongly nonlinear behaviour, which is hardening and softening with respect to frequency and amplitude of the dynamic loading, respectively.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Lin Zhang ◽  
Xiaohui Wei

Crack closure model has been used in several applications on the prediction of fatigue crack growth life, with expression of crack opening stress often serving as milestones. A typical difficulty in calculating the crack opening stress is the phenomenon of crack closure caused by the compressive load effect. Compressive load effect, resulting in the change of residual stress status at the unloading stage and the decrease of crack opening stress, is a long-term challenge for predicting fatigue crack growth life. We propose the expression of crack opening stress to predict fatigue crack growth life based on the analysis of compact tensile specimen with elastoplastic element method. It combines the characteristics of material and load to deal with the phenomenon of crack closure and uses stress ratio and normalized maximum applied load variable to construct the expression of crack opening stress. In the study of tensile-compression fatigue crack growth experiments, the proposed expression is proved to improve, by comparative analysis, the predictive ability on the whole range of experiment data. The novel expression is accurate and simple. Consequently, it is conducive to calculate the crack opening stress under tension-compression load.

Sign in / Sign up

Export Citation Format

Share Document