Axisymmetric contact with friction of a rigid sphere with an elastic half-space

Author(s):  
O. I. Zhupanska

The problem of normal contact with friction of a rigid sphere with an elastic half-space is considered. An analytical treatment of the problem is presented, with the corresponding boundary-value problem formulated in the toroidal coordinates. A general solution in the form of Papkovich–Neuber functions and the Mehler–Fock integral transform is used to reduce the problem to a single integral equation with respect to the unknown contact pressure in the slip zone. An analysis of contact stresses is carried out, and exact analytical solutions are obtained in limiting cases, including a full stick contact problem and a contact problem for an incompressible half-space.

Author(s):  
K Houanoh ◽  
H-P Yin ◽  
J Cesbron ◽  
Q-C He

The present work aims to analyze the influence of the in-plan distribution of asperities on the contact between periodically rough surfaces. Square pattern and hexagonal pattern rigid surfaces are considered. Their contact with an elastic half-space is analyzed by numerical simulations. Three surfaces are generated with identical asperities periodically distributed in a plan according to different patterns. It follows from numerical results that when the load and the real contact area are small, the asperities act almost independently. However, the interaction between close asperities increases with the load becomes intensified and has a significant effect on the contact area when the situation is close to full contact.


1991 ◽  
Vol 57 (543) ◽  
pp. 2664-2671
Author(s):  
Takao AKIYAMA ◽  
Toshiaki HARA ◽  
Toshikazu SHIBUYA ◽  
Takashi KOIZUMI

Sign in / Sign up

Export Citation Format

Share Document