Static Casimir effect induced optical chaos in an optomechanical system

Author(s):  
Xiao-Yun Wang ◽  
Liugang Si ◽  
xiaohu Lu ◽  
Ying Wu
2014 ◽  
Vol 1 ◽  
pp. 332-335
Author(s):  
Laurent Larger ◽  
Romain Modeste Nguimdo ◽  
Luis Pesquera ◽  
Pere Colet
Keyword(s):  

Author(s):  
Astrid Lambrecht ◽  
Antoine Canaguier-Durand ◽  
Romain Guérout ◽  
Serge Reynaud

2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 189
Author(s):  
Diego A. R. Dalvit ◽  
Wilton J. M. Kort-Kamp

Temporal modulation of the quantum vacuum through fast motion of a neutral body or fast changes of its optical properties is known to promote virtual into real photons, the so-called dynamical Casimir effect. Empowering modulation protocols with spatial control could enable the shaping of spectral, spatial, spin, and entanglement properties of the emitted photon pairs. Space–time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties. Here, we report the mechanical analog of this phenomenon by considering systems in which the lattice structure undergoes modulation in space and in time. We develop a microscopic theory that applies both to moving mirrors with a modulated surface profile and atomic array meta-mirrors with perturbed lattice configuration. Spatiotemporal modulation enables motion-induced generation of co- and cross-polarized photon pairs that feature frequency-linear momentum entanglement as well as vortex photon pairs featuring frequency-angular momentum entanglement. The proposed space–time dynamical Casimir effect can be interpreted as induced dynamical asymmetry in the quantum vacuum.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Tie Wang ◽  
Cheng-Hua Bai ◽  
Dong-Yang Wang ◽  
Shutian Liu ◽  
Shou Zhang ◽  
...  

2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Ryuichi Ohta ◽  
Loïc Herpin ◽  
Victor M. Bastidas ◽  
Takehiko Tawara ◽  
Hiroshi Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document