The angular pattern in the hyperfine structure of Xe I and Kr I atoms

Author(s):  
Christophe Blondel ◽  
Cyril Drag

Abstract Recent reviews of the hyperfine structure of xenon and krypton have highlighted the variety of the values taken by the hyperfine coefficients A and B of these atoms. These variations, as functions of the atomic angular momenta, were however not explained quantitatively. This article shows the simple picture and angular momentum algebra that make it possible to account for the observed trend. The only necessary approximations are to consider the interaction of the outer electron negligible with respect to the coupling of the p5 core with the nucleus, and to assume that the Racah ||(p5)j l[K]J F〉basis, conventionally used for the atomic states of noble gases, makes a fitting description of the hierarchy of their angular momentum couplings. The way the calculation corroborates the apparently erratic values of hyperfine coefficients A and B in Xe I and Kr I shows up as a confirmation of the validity of these approximations.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yinghui Guo ◽  
Shicong Zhang ◽  
Mingbo Pu ◽  
Qiong He ◽  
Jinjin Jin ◽  
...  

AbstractWith inherent orthogonality, both the spin angular momentum (SAM) and orbital angular momentum (OAM) of photons have been utilized to expand the dimensions of quantum information, optical communications, and information processing, wherein simultaneous detection of SAMs and OAMs with a single element and a single-shot measurement is highly anticipated. Here, a single azimuthal-quadratic phase metasurface-based photonic momentum transformation (PMT) is illustrated and utilized for vortex recognition. Since different vortices are converted into focusing patterns with distinct azimuthal coordinates on a transverse plane through PMT, OAMs within a large mode space can be determined through a single-shot measurement. Moreover, spin-controlled dual-functional PMTs are proposed for simultaneous SAM and OAM sorting, which is implemented by a single spin-decoupled metasurface that merges both the geometric phase and dynamic phase. Interestingly, our proposed method can detect vectorial vortices with both phase and polarization singularities, as well as superimposed vortices with a certain interval step. Experimental results obtained at several wavelengths in the visible band exhibit good agreement with the numerical modeling. With the merits of ultracompact device size, simple optical configuration, and prominent vortex recognition ability, our approach may underpin the development of integrated and high-dimensional optical and quantum systems.


2012 ◽  
Vol 8 (S295) ◽  
pp. 229-229
Author(s):  
S. Brough ◽  
K.-V. Tran ◽  
A. von der Linden

AbstractMassive Brightest Cluster Galaxies (BCGs) are observed to have a range of angular momenta, suggesting a variety of merging histories.


1952 ◽  
Vol 30 (3) ◽  
pp. 253-256 ◽  
Author(s):  
G. S. Colladay ◽  
R. E. Sells ◽  
D. L. Falkoff

The transformation amplitudes for the quantum-mechanical vector addition of angular momenta, [Formula: see text] are given.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740021 ◽  
Author(s):  
Wesley Pereira ◽  
Ricardo Garcia ◽  
Larry Zamick ◽  
Alberto Escuderos ◽  
Kai Neergård

We report the discovery of a partial conservation law obeyed by a schematic Hamiltonian of two protons and two neutrons in a [Formula: see text] shell. In our Hamiltonian, the interaction matrix element of two nucleons with combined angular momentum [Formula: see text] is linear in [Formula: see text] for even [Formula: see text] and constant for odd [Formula: see text]. It turns out that in some stationary states, the sum of the angular momenta [Formula: see text] and [Formula: see text] of the proton and neutron pairs is conserved. The energies of these states are given by a linear function of [Formula: see text]. The systematics of their occurrence is described and explained.


2019 ◽  
Vol 630 ◽  
pp. A68 ◽  
Author(s):  
Jian Li ◽  
Zhihong Jeff Xia ◽  
Liyong Zhou

Aims. We aim to determine the relative angle between the total angular momentum of the minor planets and that of the Sun-planets system, and to improve the orientation of the invariable plane of the solar system. Methods. By utilizing physical parameters available in public domain archives, we assigned reasonable masses to 718 041 minor planets throughout the solar system, including near-Earth objects, main belt asteroids, Jupiter trojans, trans-Neptunian objects, scattered-disk objects, and centaurs. Then we combined the orbital data to calibrate the angular momenta of these small bodies, and evaluated the specific contribution of the massive dwarf planets. The effects of uncertainties on the mass determination and the observational incompleteness were also estimated. Results. We determine the total angular momentum of the known minor planets to be 1.7817 × 1046 g cm2 s−1. The relative angle α between this vector and the total angular momentum of the Sun-planets system is calculated to be about 14.74°. By excluding the dwarf planets Eris, Pluto, and Haumea, which have peculiar angular momentum directions, the angle α drops sharply to 1.76°; a similar result applies to each individual minor planet group (e.g., trans-Neptunian objects). This suggests that, without these three most massive bodies, the plane perpendicular to the total angular momentum of the minor planets would be close to the invariable plane of the solar system. On the other hand, the inclusion of Eris, Haumea, and Makemake can produce a difference of 1254 mas in the inclination of the invariable plane, which is much larger than the difference of 9 mas induced by Ceres, Vesta, and Pallas as found previously. By taking into account the angular momentum contributions from all minor planets, including the unseen ones, the orientation improvement of the invariable plane is larger than 1000 mas in inclination with a 1σ error of ∼50−140 mas.


1996 ◽  
Vol 12 (4) ◽  
pp. 413-430 ◽  
Author(s):  
Young-Hoo Kwon

Ten body segment parameter (BSP) estimation methods were selected to compute the BSPs of 3 collegiate male gymnasts: cadaver-based methods (Group C, 4 methods), mass scanning-based methods (Group M, 4 methods) and geometric methods (Group G, 2 methods). Angular momenta of nine double somersault with full twist H-bar dismounts performed by the 3 gymnasts were computed. Each trial was processed 10 times using 10 sets of BSPs obtained from the estimation methods. Intergroup and intermethod comparisons of the airborne angular momenta were made. It was concluded that the method of BSP estimation affected the magnitude of airborne angular momentum but did not affect the magnitude of angular momentum fluctuation during the airborne phase.


2008 ◽  
Vol 3 (2) ◽  
pp. 113-125 ◽  
Author(s):  
Xiong-jun Liu ◽  
Xin Liu ◽  
Leong-Chuan Kwek ◽  
Choo Hiap Oh

Sign in / Sign up

Export Citation Format

Share Document