Ultra-broadband solar light wave trapping by gradient cavity-thin-film metasurface

Author(s):  
Zhefu Liao ◽  
Zheng-qi Liu ◽  
Qizhao Wu ◽  
Xuefeng Zhan ◽  
Mulin Liu ◽  
...  
2022 ◽  
Vol 124 ◽  
pp. 111967
Author(s):  
Mohd Fadhil Majnis ◽  
Ong Chia Yee ◽  
Mohd Azam Mohd Adnan ◽  
Mohd Rashid Yusof Hamid ◽  
Ku Zilati Ku Shaari ◽  
...  

2018 ◽  
Vol 13 ◽  
pp. 117739011876336 ◽  
Author(s):  
Eman Alzahrani

Fast Green (FCF) dye is commonly used in both cytology and histology applications. Previous studies have found that it can cause mutagenic and tumorigenic effects in experimental human and animal populations. It can also be a source of skin, eye, respiratory, and digestive irritation. The purpose of this study was to examine the use of thin film membranes to degrade FCF. A thin film membrane of chitosan (CS) was fabricated and subsequently filled with zinc oxide nanoparticles (ZnO) or ZnO/CuO-heterostructured nanocomposites. The CS membrane was used as a matrix, and the nanomaterials were used as photocatalysts. The prepared membranes were characterised by four analytical techniques: atomic force microscopy, scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analyses. The photocatalytic activity of the fabricated membranes was evaluated by performing experiments in which aqueous solutions of FCF dye that contained the fabricated membrane were irradiated with solar light or UV light. The photodegradation percentage was spectrophotometrically determined by monitoring the maximum wavelengths (λmax) of FCF at 623 nm for different irradiation times. The decolourisation percentages of the dye under solar light were 57.90% and 60.23% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. When UV light irradiation was employed as the source of irradiation, the photodegradation percentages of FCF were 71.45% and 91.21% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. These results indicated that the best photocatalytic system for the degradation of FCF dye was CS-ZnO/CuO membrane in combination with UV light irradiation. The study also found that it was easy to separate the prepared membranes after the reaction without the need for a centrifuge or magnet. The results demonstrate the potential for CS-ZnO and CS-ZnO/CuO membranes for use as effective sorbents during the process of photodegradation of harmful dyes within waste water recycling practices.


2019 ◽  
Vol 19 (6) ◽  
pp. 3376-3387 ◽  
Author(s):  
Hongyuan Shang ◽  
Min Ma ◽  
Fasheng Liu ◽  
Zhe Miao ◽  
Aiping Zhang

In this study, reduced graphene oxide-TiO2 (RGO-TiO2) thin film was prepared by a simple self-assembly method at the gas/liquid interface. The as-prepared thin films were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), UV-visible-diffuse reflectance spectroscopy (UV-vis-DRS) and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of TiO2 and RGO-TiO2 thin film were investigated via the reduction of Cr(VI) under simulated solar light and visible light (λ > 420 nm) irradiation. The results showed that the RGO-TiO2 thin film exhibited remarkably enhanced activity for photoreduction of Cr(VI) under simulated sunlight or visible light irradiation, with a reaction rate constant of 5.7 times greater than that of pure TiO2 thin film. The main reason for enhanced photocatalytic activity is that introduction of RGO can restrain the recombination of photogenerated electron–hole pairs and reduce the aggregation of TiO2 NPs. The effects of different reaction parameters such as irradiation time, irradiation source, pH values, catalyst dosage and initial Cr(VI) concentration were investigated in detail. The highest photoreduction efficiency of Cr(VI) was achieved and the reduction rate constant k was 0.0189 min−1 during the reduction of 0.5 mg L−1 of Cr(VI) with 10 cm2 RGO-TiO2 thin film at pH 2.0 and 293 K. Moreover, different scavengers were also added in the photoreduction of Cr(VI) system to identify the reactive species. Based on the results of the present study, a possible mechanism of photoreduction on RGO-TiO2 thin film under simulated solar light was proposed. Overall, this study provides a novel approach to efficiently photoreduction of Cr(VI) by RGO-TiO2 thin film.


2012 ◽  
Vol 41 (6) ◽  
pp. 1713-1719 ◽  
Author(s):  
Mizue Mizoshiri ◽  
Masashi Mikami ◽  
Kimihiro Ozaki ◽  
Keizo Kobayashi

Author(s):  
Kuniaki Matoba ◽  
Yasuaki Matsuda ◽  
Masanari Takahashi ◽  
Yoshihisa Sakata ◽  
Jinlong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document