scholarly journals Entanglement versus gap, quantum teleportation, and the AKLT model

2021 ◽  
Vol 33 (31) ◽  
pp. 315801
Author(s):  
Ari Mizel
2001 ◽  
Vol 171 (11) ◽  
pp. 1264 ◽  
Author(s):  
Ivan V. Sokolov ◽  
A. Gatti ◽  
M.I. Kolobov ◽  
L.A. Lugiato

Author(s):  
D. Sowmya ◽  
S. Sivasankaran

In the cloud environment, it is difficult to provide security to the monolithic collection of data as it is easily accessed by breaking the algorithms which are based on mathematical computations and on the other hand, it takes much time for uploading and downloading the data. This paper proposes the concept of implementing quantum teleportation i.e., telecommunication + transportation in the cloud environment for the enhancement of cloud security and also to improve speed of data transfer through the quantum repeaters. This technological idea is extracted from the law of quantum physics where the particles say photons can be entangled and encoded to be teleported over large distances. As the transfer of photons called qubits allowed to travel through the optical fiber, it must be polarized and encoded with QKD (Quantum Key Distribution) for the security purpose. Then, for the enhancement of the data transfer speed, qubits are used in which the state of quantum bits can be encoded as 0 and 1 concurrently using the Shors algorithm. Then, the Quantum parallelism will help qubits to travel as fast as possible to reach the destination at a single communication channel which cannot be eavesdropped at any point because, it prevents from creating copies of transmitted quantum key due to the implementation of no-cloning theorem so that the communication parties can only receive the intended data other than the intruders.


2020 ◽  
Vol 101 (1) ◽  
Author(s):  
Arkaprabha Ghosal ◽  
Debarshi Das ◽  
Saptarshi Roy ◽  
Somshubhro Bandyopadhyay

2007 ◽  
Vol 99 (11) ◽  
Author(s):  
Hidehiro Yonezawa ◽  
Samuel L. Braunstein ◽  
Akira Furusawa

Author(s):  
Stephen Piddock ◽  
Ashley Montanaro

AbstractA family of quantum Hamiltonians is said to be universal if any other finite-dimensional Hamiltonian can be approximately encoded within the low-energy space of a Hamiltonian from that family. If the encoding is efficient, universal families of Hamiltonians can be used as universal analogue quantum simulators and universal quantum computers, and the problem of approximately determining the ground-state energy of a Hamiltonian from a universal family is QMA-complete. One natural way to categorise Hamiltonians into families is in terms of the interactions they are built from. Here we prove universality of some important classes of interactions on qudits (d-level systems): We completely characterise the k-qudit interactions which are universal, if augmented with arbitrary Hermitian 1-local terms. We find that, for all $$k \geqslant 2$$ k ⩾ 2 and all local dimensions $$d \geqslant 2$$ d ⩾ 2 , almost all such interactions are universal aside from a simple stoquastic class. We prove universality of generalisations of the Heisenberg model that are ubiquitous in condensed-matter physics, even if free 1-local terms are not provided. We show that the SU(d) and SU(2) Heisenberg interactions are universal for all local dimensions $$d \geqslant 2$$ d ⩾ 2 (spin $$\geqslant 1/2$$ ⩾ 1 / 2 ), implying that a quantum variant of the Max-d-Cut problem is QMA-complete. We also show that for $$d=3$$ d = 3 all bilinear-biquadratic Heisenberg interactions are universal. One example is the general AKLT model. We prove universality of any interaction proportional to the projector onto a pure entangled state.


2021 ◽  
Vol 1 (1) ◽  
pp. 43-49
Author(s):  
Zhi-Hui Yan ◽  
Ji-Liang Qin ◽  
Zhong-Zhong Qin ◽  
Xiao-Long Su ◽  
Xiao-Jun Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document