A new IMU error parameter estimation method for hypersonic vehicle based on hybrid neural network

2020 ◽  
Vol 32 (1) ◽  
pp. 015011
Author(s):  
Weilin Guo ◽  
Yong Xian ◽  
Xinlong Chang ◽  
Leliang Ren ◽  
Gang Lei
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-wei Yang ◽  
Man-feng Dou ◽  
Zhi-yong Dai

Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC) fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1) Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2) Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.


Sign in / Sign up

Export Citation Format

Share Document