Real-time, single-molecule observation of biomolecular interactions inside nanophotonic zero mode waveguides

2021 ◽  
Author(s):  
Anastasiia Nemashkalo ◽  
Mary Elizabeth Phipps ◽  
Scott Patrick Hennelly ◽  
Peter Marvin Goodwin

Abstract Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosceinces RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model – transcription of structured ribosomal RNA from E. coli and interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.

2009 ◽  
Vol 96 (3) ◽  
pp. 59a
Author(s):  
Zhuangxiong Huang ◽  
Serge Donkers ◽  
Jacob W.J. Kerssemakers ◽  
Nynke H. Dekker

2008 ◽  
Vol 1138 ◽  
Author(s):  
Teresa Fazio ◽  
Mari-Liis Visnapuu ◽  
Shalom J. Wind ◽  
Eric Greene

AbstractIn this work, we combine nanoscale engineering with single-molecule biology to probe the biochemical interactions between individual proteins and DNA. This approach, a vast improvement over previous methods, constructs a platform to observe thousands of protein-DNA interactions in real time with unprecedented detail. A key challenge in these experiments involves collecting enough statistically relevant data in order to analyze reactions which are designed to be probed individually. “DNA curtains” are formed by flowing the DNA tethered to a lipid bilayer across nanopatterned barriers, facilitating massively parallel data acquisition.


Science ◽  
2018 ◽  
Vol 360 (6388) ◽  
pp. 521-526 ◽  
Author(s):  
Emiko Kazuma ◽  
Jaehoon Jung ◽  
Hiromu Ueba ◽  
Michael Trenary ◽  
Yousoo Kim

2015 ◽  
Vol 108 (2) ◽  
pp. 26a
Author(s):  
Digvijay Singh ◽  
Samuel H. Sternberg ◽  
Jingyi Fei ◽  
Jennifer A. Doudna ◽  
Taekjip Ha

1997 ◽  
Vol 22 (16) ◽  
pp. 1265 ◽  
Author(s):  
M. D. Barnes ◽  
N. Lermer ◽  
C.-Y. Kung ◽  
W. B. Whitten ◽  
J. M. Ramsey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document