scholarly journals Simplifying the hardware requirements for fast neural EIT of peripheral nerves

Author(s):  
Enrico Ravagli ◽  
Svetlana Mastitskaya ◽  
David S Holder ◽  
Kirill Y Aristovich

Abstract Objective: The main objective of this study was to assess the feasibility of lowering the hardware requirements for fast neural EIT in order to support the distribution of this technique. Specifically, the feasibility of replacing the commercial modules present in the existing high-end setup with compact and cheap customized circuitry was assessed. Approach: Nerve EIT imaging was performed on rat sciatic nerves with both our standard ScouseTom setup and a customized version in which commercial benchtop current sources were replaced by custom circuitry. Electrophysiological data and images collected in the same experimental conditions with the two setups were compared. Data from the customized setup was subject to a down-sampling analysis to simulate the use of a recording module with lower specifications. Main results: Compound action potentials (573±287µV and 487±279µV, p=0.28) and impedance changes (36±14µV and 31±16µV, p=0.49) did not differ significantly when measured using commercial high-end current sources or our custom circuitry, respectively. Images reconstructed from both setups showed neglibile (<1voxel, i.e. 40µm) difference in peak location and a high degree of correlation (R2=0.97). When down-sampling from 24 to 16 bits ADC resolution and from 100KHz to 50KHz sampling frequency, signal-to-noise ratio showed acceptable decrease (<-20%), and no meaningful image quality loss was detected (peak location difference <1voxel, pixel-by-pixel correlation R2=0.99). Significance: The technology developed for this study greatly reduces the cost and size of a fast neural EIT setup without impacting quality and thus promotes the adoption of this technique by the neuroscience research community.

2000 ◽  
Vol 5 (4) ◽  
pp. 227-235 ◽  
Author(s):  
Sidney Ochs ◽  
Rahman Pourmand ◽  
Kenan Si ◽  
Richard N. Friedman

2009 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Stefan Brill ◽  
Joachim Müller ◽  
Rudolf Hagen ◽  
Alexander Möltner ◽  
Steffi-Johanna Brockmeier ◽  
...  

2010 ◽  
Vol 31 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Isaac Alvarez ◽  
Angel de la Torre ◽  
Manuel Sainz ◽  
Cristina Roldán ◽  
Hansjoerg Schoesser ◽  
...  

1983 ◽  
Vol 61 (10) ◽  
pp. 1149-1155 ◽  
Author(s):  
J. A. Armour

Afferent stimulation of one thoracic cardiopulmonary nerve generated compound action potentials in the efferent axons of other ipsilateral cardiopulmonary nerves in dogs, 14 days after their thoracic autonomic ganglia had been decentralized. The compound action potentials were influenced by the frequency of activation and (in 5 of 12 dogs) by pharmacological autonomic blocking agents (hexamethonium, atropine, phentolamine, and propranolol). Moreover, they were abolished transiently when chymotrypsin was injected locally into the ganglia, and extendedly when manganese was injected. Thus, synapses that can be activated by stimulation of afferent nerves exist in chronically decentralized thoracic autonomic nerves and ganglia. It is proposed that regulation of the heart and lungs occurs in part via thoracic autonomic neural elements independent of the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document