Plasma wakefield acceleration beyond the dephasing limit with 400 GeV proton driver

Author(s):  
Konstantin V Lotov ◽  
Petr Tuev

Abstract A new regime of proton-driven plasma wakefield acceleration is discovered, in which the plasma nonlinearity increases the phase velocity of the excited wave compared to that of the protons. If the beam charge is much larger than minimally necessary to excite a nonlinear wave, there is sufficient freedom in choosing the longitudinal plasma density profile to make the wave speed close to the speed of light. This allows electrons or positrons to be accelerated to about 200 GeV with a 400 GeV proton driver.

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Constantin Aniculaesei ◽  
Vishwa Bandhu Pathak ◽  
Hyung Taek Kim ◽  
Kyung Hwan Oh ◽  
Byung Ju Yoo ◽  
...  

Abstract The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 ± 1 MeV to 262 ± 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 ± 0.45 mrad to 12.6 ± 1.2 mrad along the horizontal axis and from 35 ± 0.3 mrad to 8.3 ± 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons.


2007 ◽  
Vol 22 (23) ◽  
pp. 4265-4269
Author(s):  
MITSURU UESAKA ◽  
ANDREA ROSSI

We categorized 16 contributions into the three sub-fields. Those are 1. Compton scattering X-ray sources, 2. FEL and RF photoinjectors and 3. Plasma wakefield acceleration/innovative acceleration schemes. We performed a half day working group for each sub-field. The titles and summaries of the contributions appear in the article.


2002 ◽  
Vol 30 (1) ◽  
pp. 227-238 ◽  
Author(s):  
Niansheng Qi ◽  
J. Schein ◽  
J. Thompson ◽  
P. Coleman ◽  
M. McFarland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document