scholarly journals Countermeasures for advanced unambiguous state discrimination attack on quantum key distribution protocol based on weak coherent states

2019 ◽  
Vol 94 (12) ◽  
pp. 125102 ◽  
Author(s):  
A Gaidash ◽  
A Kozubov ◽  
G Miroshnichenko
2007 ◽  
Vol 7 (7) ◽  
pp. 665-688
Author(s):  
M. Curty ◽  
L.L. Zhang ◽  
H.-K. Lo ◽  
N. Lutkenhaus

We investigate limitations imposed by sequential attacks on the performance of differential-phase-shift quantum key distribution protocols that use pulsed coherent light. In particular, we analyze two sequential attacks based on unambiguous state discrimination and minimum error discrimination, respectively, of the signal states emitted by the source. Sequential attacks represent a special type of intercept-resend attacks and, therefore, they provide ultimate upper bounds on the maximal distance achievable by quantum key distribution schemes.


2004 ◽  
Vol 4 (5) ◽  
pp. 325-360
Author(s):  
D. Gottesman ◽  
H.-K. Lo ◽  
N. L\"utkenhaus ◽  
J. Preskill

We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol in the case where the source and detector are under the limited control of an adversary. Our proof applies when both the source and the detector have small basis-dependent flaws, as is typical in practical implementations of the protocol. We derive a general lower bound on the asymptotic key generation rate for weakly basis-dependent eavesdropping attacks, and also estimate the rate in some special cases: sources that emit weak coherent states with random phases, detectors with basis-dependent efficiency, and misaligned sources and detectors.


Author(s):  
D. B. Horoshko ◽  
S. Ya. Kilin

We consider an unambiguous state discrimination attack on the B92 protocol of quantum key distribution, realized on the basis of polarization encoding of photons produced by a single-photon source. We calculate the secure key rate and the maximal tolerable loss for various overlaps between two signal states employed in this protocol. We make also a comparison with a physically impossible attack of perfect quantum cloning, and show that the unambiguous state discrimination is much more dangerous for the B92 protocol, than this attack, demonstrating thus, that the security of quantum key distribution is not always based on the no-cloning theorem.


2012 ◽  
Vol 10 (01) ◽  
pp. 1250004 ◽  
Author(s):  
A. BECIR ◽  
F. A. A. EL-ORANY ◽  
M. R. B. WAHIDDIN

We propose a continuous variable quantum key distribution protocol based on discrete modulation of eight-state coherent states. We present a rigorous security proof against the collective attacks by taking into consideration the realistic lossy and noisy quantum channel, the imperfect detector efficiency, and the detector electronic noise. This protocol shows high tolerance against excess noise and promises to achieve over 100 km distance of optical fiber.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1100 ◽  
Author(s):  
Luyu Huang ◽  
Yichen Zhang ◽  
Ziyang Chen ◽  
Song Yu

A unidimensional continuous-variable quantum key distribution protocol with untrusted detection is proposed, where the two legitimate partners send unidimensional modulated or Gaussian-modulated coherent states to an untrusted third party, i.e., Charlie, to realize the measurement. Compared with the Gaussian-modulated coherent-state protocols, the unidimensional modulated protocols take the advantage of easy modulation, low cost, and only a small number of random numbers required. Security analysis shows that the proposed protocol cannot just defend all detectors side channels, but also achieve great performance under certain conditions. Specifically, three cases are discussed in detail, including using unidimensional modulated coherent states in Alice’s side, in Bob’s side, and in both sides under realistic conditions, respectively. Under the three conditions, we derive the expressions of the secret key rate and give the optimal gain parameters. It is found that the optimal performance of the protocol is achieved by using unidimensional modulated coherent states in both Alice’s and Bob’s side. The resulting protocol shows the potential for long-distance secure communication using the unidimensional quantum key distribution protocol with simple modulation method and untrusted detection under realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document