entanglement swapping
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 70)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 701
Author(s):  
Jianxiong Liang ◽  
Xiaoguang Chen ◽  
Tianyi Wang

Quantum networks have good prospects for applications in the future. Compared with classical networks, small-world quantum networks have some interesting properties. The topology of the network can be changed through entanglement exchange operations, and different network topologies will result in different percolation thresholds when performing entanglement percolation. A lower percolation threshold means that quantum networks require fewer minimum resources for communication. Since a shared singlet between two nodes can still be a limitation, concurrency percolation theory (ConPT) can be used to relax the condition. In this paper, we investigate how entanglement distribution is performed in small-world quantum networks to ensure that nodes in the network can communicate with each other by establishing communication links through entanglement swapping. Any node can perform entanglement swapping on only part of the connected edges, which can reduce the influence of each node in the network during entanglement swapping. In addition, the ConPT method is used to reduce the percolation threshold even further, thus obtaining a better network structure and reducing the resources required.


2021 ◽  
Author(s):  
Xi Huang ◽  
Yan Chang ◽  
Wen Cheng ◽  
Min Hou ◽  
Shi-Bin Zhang

Abstract In this paper, by using swap test, a quantum private comparison (QPC) protocol of arbitrary single qubit states with a semi-honest third party is proposed. The semi-honest third party (TP) is required to help two participants perform the comparison. She can record intermediate results and do some calculations in the whole process of the protocol execution, but she cannot conspire with any participants. In the process of comparison, TP cannot get two participants' private information except the comparison results. According to the security analysis, the proposed protocol can resist both outsider attacks and participant attacks. Compared with the existing QPC protocols, the proposed one does not require any entanglement swapping technology, and it can compare two participants' qubits by performing swap test, which is easier to implement with current technology. Meanwhile, the proposed protocol can compare secret integers. It encodes secret integers into the amplitude of quantum state rather than transfer them as binary representations, and the encoded quantum state is compared by performing swap test. Additionally, the proposed QPC protocol is extended to the QPC of arbitrary single qubit states by using multi-qubit swap test.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 552
Author(s):  
Jianming Wen ◽  
Irina Novikova ◽  
Chen Qian ◽  
Chuanwei Zhang ◽  
Shengwang Du

By coherently combining advantages while largely avoiding limitations of two mainstream platforms, optical hybrid entanglement involving both discrete and continuous variables has recently garnered widespread attention and emerged as a promising idea for building heterogenous quantum networks. In contrast to previous results, here we propose a new scheme to remotely generate hybrid entanglement between discrete polarization and continuous quadrature optical qubits heralded by two-photon Bell-state measurement. As a novel nonclassical light resource, we further use it to discuss two examples of ways—entanglement swapping and quantum teleportation—in which quantum information processing and communications could make use of this hybrid technique.


2021 ◽  
Author(s):  
Ankit Sharma ◽  
Manisha J Nene

We are at the dawn of quantum era; research efforts are been made on quantum information transmission techniques. Properties of quantum mechanics poses unique challenges in terms of wave collapse function, No cloning theorem and reversible operations. Quantum teleportation and quantum entanglement swapping based architecture are utilized to transmit qubit. In this paper we propose an approach to transmit qubits using controlled NOT gate (CNOT) gates and implement it on quantum machine.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Paul Hilaire ◽  
Edwin Barnes ◽  
Sophia E. Economou ◽  
Frédéric Grosshans

2021 ◽  
Vol 11 (22) ◽  
pp. 10869
Author(s):  
Jin Xu ◽  
Xiaoguang Chen ◽  
Hanwei Xiao ◽  
Pingxun Wang ◽  
Mingzi Ma

Teleportation is an important protocol in quantum communication. Realizing teleportation between arbitrary nodes in multi-hop quantum networks is of great value. Most of the existing multi-hop quantum networks are based on Bell states or Greeberger–Horne–Zeilinger (GHZ) states. Bell state is more susceptible to noise than GHZ states after purification, but generating a GHZ state consumes more basic states. In this paper, a new quantum multi-hop network scheme is proposed to improve the interference immunity of the network and avoid large consumption at the same time. Teleportation is realized in a network based on entanglement swapping, fusion, and purification. To ensure the robustness of the system, we also design the purification algorithm. The simulation results show the successful establishment of entanglement with high fidelity. Cirq is used to verify the network on the Noisy Intermediate-Scale Quantum (NISQ) platform. The robustness of the fusion scheme is better than the Bell states scheme, especially with the increasing number of nodes. This paper provides a solution to balance the performance and consumption in a multi-hop quantum network.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 570
Author(s):  
Kenneth Sharman ◽  
Faezeh Kimiaee Asadi ◽  
Stephen C Wein ◽  
Christoph Simon

Inspired by recent developments in the control and manipulation of quantum dot nuclear spins, which allow for the transfer of an electron spin state to the surrounding nuclear-spin ensemble for storage, we propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles, which serve as spin-photon interfaces and quantum memories respectively. We consider the use of low-strain quantum dots embedded in high-cooperativity optical microcavities. Quantum dot nuclear-spin ensembles allow for the long-term storage of entangled states, and heralded entanglement swapping is performed using cavity-assisted gates. We highlight the advances in quantum dot technologies required to realize our quantum repeater scheme which promises the establishment of high-fidelity entanglement over long distances with a distribution rate exceeding that of the direct transmission of photons.


2021 ◽  
Vol 20 (10) ◽  
Author(s):  
Yongli Wang ◽  
Peichu Hu ◽  
Qiuliang Xu

Sign in / Sign up

Export Citation Format

Share Document