scholarly journals On the initial singularity problem in rainbow cosmology

2015 ◽  
Vol 2015 (08) ◽  
pp. 005-005 ◽  
Author(s):  
Grasiele Santos ◽  
Giulia Gubitosi ◽  
Giovanni Amelino-Camelia
2011 ◽  
Vol 08 (04) ◽  
pp. 705-730 ◽  
Author(s):  
G. Y. ZHANG ◽  
G. R. LIU

This paper presents two novel and effective cell-based smoothed point interpolation methods (CS-PIM) using isoparametric PIM (PIM-Iso) shape functions and condensed radial PIM (RPIM-Cd) shape functions respectively. These two types of PIM shape functions can successfully overcome the singularity problem occurred in the process of creating PIM shape functions and make the constructed CS-PIM models work well with the three-node triangular meshes. Smoothed strains are obtained by performing the generalized gradient smoothing operation over each triangular background cells, because the nodal PIM shape functions can be discontinuous. The generalized smoothed Galerkin (GS-Galerkin) weakform is used to create the discretized system equations. Some numerical examples are studied to examine various properties of the present methods in terms of accuracy, convergence, and computational efficiency.


Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2669-2688 ◽  
Author(s):  
Wenfu Xu ◽  
Lei Yan ◽  
Zonggao Mu ◽  
Zhiying Wang

SUMMARYAn S-R-S (Spherical-Revolute-Spherical) redundant manipulator is similar to a human arm and is often used to perform dexterous tasks. To solve the inverse kinematics analytically, the arm-angle was usually used to parameterise the self-motion. However, the previous studies have had shortcomings; some methods cannot avoid algorithm singularity and some are unsuitable for configuration control because they use a temporary reference plane. In this paper, we propose a method of analytical inverse kinematics resolution based on dual arm-angle parameterisation. By making use of two orthogonal vectors to define two absolute reference planes, we obtain two arm angles that satisfy a specific condition. The algorithm singularity problem is avoided because there is always at least one arm angle to represent the redundancy. The dual arm angle method overcomes the shortcomings of traditional methods and retains the advantages of the arm angle. Another contribution of this paper is the derivation of the absolute reference attitude matrix, which is the key to the resolution of analytical inverse kinematics but has not been previously addressed. The simulation results for typical cases that include the algorithm singularity condition verified our method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Min Zheng ◽  
Tangqing Yuan ◽  
Tao Huang

In order to guarantee the passivity of a kind of conservative system, the port Hamiltonian framework combined with a new energy tank is proposed in this paper. A time-varying impedance controller is designed based on this new framework. The time-varying impedance control method is an extension of conventional impedance control and overcomes the singularity problem that existed in the traditional form of energy tank. The validity of the controller designed in this paper is shown by numerical examples. The simulation results show that the proposed controller can not only eliminate the singularity problem but can also improve the control performance.


Author(s):  
Salman Ahmad ◽  
Atif Iqbal ◽  
Imtiaz Ashraf ◽  
Sanjeevikumar Padmanaban ◽  
Mohammed Meraj

Few switching transitions in high power and medium voltage application of Power converters are desirable. The selective harmonics elimination (SHE) pulse width modulation offers a better quality waveform with lower switching transitions and hence lower switching losses. The SHE is a pre-programmed modulation technique where certain amounts of lower order harmonics are removed and fundamental voltage is controlled. After Fourier analysis of output waveform, a set of nonlinear transcendental equations is obtained which exhibits, multiple, unique or no solution in different range of modulation index (MI). In this paper, an iterative method based on the Jacobian estimate is proposed to solve a highly non-linear set of SHE equations. The proposed technique is easy in implementation and can solve a large number of such equations as computation of the Jacobian matrix in the subsequent iteration is estimated from the previous values.  Moreover, the proposed method also removes the singularity problem, especially for large SHE equations. High accuracy in the initial guess is also not essential for this method and can converge to the solution with any random initial guess. The computational and simulation results are given to validate the concept. The hardware result is provided to confirm the computational and simulation results.


Sign in / Sign up

Export Citation Format

Share Document