scholarly journals Scalar dark matter clumps with angular momentum

2018 ◽  
Vol 2018 (08) ◽  
pp. 028-028 ◽  
Author(s):  
Mark P. Hertzberg ◽  
Enrico D. Schiappacasse
Keyword(s):  
2006 ◽  
Vol 2 (S235) ◽  
pp. 104-104
Author(s):  
Stéphane Herbert-Fort ◽  
Dennis Zaritsky ◽  
Yeun Jin Kim ◽  
Jeremy Bailin ◽  
James E. Taylor

AbstractThe degree to which outer dark matter halos of spiral galaxies rotate with the disk is sensitive to their accretion history and may be probed with associated satellite galaxies. We use the Steward Observatory Bok telescope to measure the sense of rotation of nearby isolated spirals and combine these data with those of their associated satellites (drawn from SDSS) to directly test predictions from numerical simulations. We aim to constrain models of galaxy formation by measuring the projected component of the halo angular momentum that is aligned with that of spiral galaxy disks, Jz. We find the mean bulk rotation of the ensemble satellite system to be co-rotating with the disk with a velocity of 22 ± 13 km/s, in general agreement with previous observational studies and suggesting that galaxy disks could be formed by halo baryons collapsing by a factor of ≈10. We also find a prograde satellite fraction of 51% and Jz, of the satellite system to be positively correlated with the disk, albeit at low significance (2655 ± 2232 kpc km/s).


2004 ◽  
Vol 220 ◽  
pp. 281-286 ◽  
Author(s):  
Roelof S. de Jong ◽  
Susan Kassin ◽  
Eric F. Bell ◽  
Stéphane Courteau

We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a colour-M/L relation. We apply the colour-M/L relation to galaxy rotation curves, using a large set of galaxies that span a great range in Hubble type, luminosity and scale size and that have accurately measured HI and/or Hα rotation curves. Using the colour-M/L relation, we construct stellar mass models of the galaxies and derive the dark matter contribution to the rotation curves.We compare our dark matter rotation curves with adiabatically contracted Navarro, Frenk, & White (1997, NFW hereafter) dark matter halos. We find that before adiabatic contraction most high surface brightness galaxies and some low surface brightness galaxies are well fit by a NFW dark matter profile. However, after adiabatic contraction, most galaxies are poorly fit in the central few kpc. the observed angular momentum distribution in the baryonic component is poorly matched by ACDM model predictions, indicating that the angular momentum distribution is not conserved during the galaxy assembly process. We find that in most galaxies the dark matter distribution can be derived by scaling up the HI gas contribution. However, we find no consistent value for the scaling factor among all the galaxies.


2019 ◽  
Vol 488 (4) ◽  
pp. 5788-5801 ◽  
Author(s):  
Angela Collier ◽  
Isaac Shlosman ◽  
Clayton Heller

ABSTRACT We study non-linear response of spinning dark matter (DM) haloes to dynamic and secular evolution of stellar bars in the embedded galactic discs, using high-resolution numerical simulations. For a sequence of haloes with the cosmological spin parameter λ = 0–0.09, and a representative angular momentum distribution, we analyse evolution of induced DM bars amplitude and quantify parameters of the response as well as trapping of DM orbits and angular momentum transfer by the main and secondary resonances. We find that (1) maximal amplitude of DM bars depends strongly on λ, while that of the stellar bars is indifferent to λ; (2) efficiency of resonance trapping of DM orbits by the bar increases with λ, and so is the mass and the volume of DM bars; (3) contribution of resonance transfer of angular momentum to the DM halo increases with λ, and for larger spin, the DM halo ‘talks’ to itself, by moving the angular momentum to larger radii – this process is maintained by resonances; and (4) prograde and retrograde DM orbits play different roles in angular momentum transfer. The ‘active’ part of the halo extends well beyond the bar region, up to few times the bar length in equatorial plane and away from this plane. (5) We model evolution of discless DM haloes and haloes with frozen discs, and found them to be perfectly stable to any Fourier modes. Finally, further studies adopting a range of mass and specific angular momentum distributions of the DM halo will generalize the dependence of DM response on the halo spin and important implications for direct detection of DM and that of the associated stellar tracers, such as streamers.


2009 ◽  
Vol 694 (2) ◽  
pp. 893-901 ◽  
Author(s):  
Kasper B. Schmidt ◽  
Steen H. Hansen ◽  
Jin H. An ◽  
Liliya L. R. Williams ◽  
Andrea V. Macciò
Keyword(s):  

2019 ◽  
Vol 492 (2) ◽  
pp. 1869-1886 ◽  
Author(s):  
Christopher Duckworth ◽  
Rita Tojeiro ◽  
Katarina Kraljic

ABSTRACT We use a combination of data from the MaNGA survey and MaNGA-like observations in IllustrisTNG100 to determine the prevalence of misalignment between the rotational axes of stars and gas. This census paper outlines the typical characteristics of misaligned galaxies in both observations and simulations to determine their fundamental relationship with morphology and angular momentum. We present a sample of ∼4500 galaxies from MaNGA with kinematic classifications which we use to demonstrate that the prevalence of misalignment is strongly dependent on morphology. The misaligned fraction sharply increases going to earlier morphologies (28 ± 3 per cent of 301 early-type galaxies, 10 ± 1 per cent of 677 lenticulars, and 5.4 ± 0.6 per cent of 1634 pure late-type galaxies). For early-types, aligned galaxies are less massive than the misaligned sample whereas this trend reverses for lenticulars and pure late-types. We also find that decoupling depends on group membership for early-types with centrals more likely to be decoupled than satellites. We demonstrate that misaligned galaxies have similar stellar angular momentum to galaxies without gas rotation, much lower than aligned galaxies. Misaligned galaxies also have a lower gas mass than the aligned, indicative that gas loss is a crucial step in decoupling star–gas rotation. Through comparison to a mock MaNGA sample, we find that the strong trends with morphology and angular momentum hold true in IllustrisTNG100. We demonstrate that the lowered angular momentum is, however, not a transient property and that the likelihood of star–gas misalignment at $z$ = 0 is correlated with the spin of the dark matter halo going back to $z$ = 1.


2019 ◽  
Vol 488 (4) ◽  
pp. 4801-4815 ◽  
Author(s):  
Fangzhou Jiang ◽  
Avishai Dekel ◽  
Omer Kneller ◽  
Sharon Lapiner ◽  
Daniel Ceverino ◽  
...  

ABSTRACT The similarity between the distributions of spins for galaxies (λgal) and for dark-matter haloes (λhalo), indicated both by simulations and observations, is naively interpreted as a one-to-one correlation between the spins of a galaxy and its host halo. This is used to predict galaxy sizes in semi-analytic models via Re ≃ fjλhaloRvir, where Re is the half-mass radius of the galaxy, fj is the angular momentum retention factor, and Rvir is the halo radius. Using two suites of zoom-in cosmological simulations, we find that λgal and the λhalo of its host halo are in fact barely correlated, especially at z ≥ 1, in line with previous indications. Since the spins of baryons and dark matter are correlated at accretion into Rvir, the null correlation in the end reflects an anticorrelation between fj and λhalo, which can arise from mergers and a ‘wet compaction’ phase that many high-redshift galaxies undergo. It may also reflect that unrepresentative small fractions of baryons are tapped to the galaxies. The galaxy spin is better correlated with the spin of the inner halo, but this largely reflects the effect of the baryons on the halo. While λhalo is not a useful predictor for Re, our simulations reproduce a general relation of the form of Re = ARvir, in agreement with observational estimates. We find that the relation becomes tighter with A = 0.02(c/10)−0.7, where c is the halo concentration, which in turn introduces a dependence on mass and redshift.


1994 ◽  
Vol 159 ◽  
pp. 279-282
Author(s):  
M.G. Haehnelt

Hierarchical cosmogonies can consistently explain the evolution of the quasar population if quasars are short-lived and supermassive black holes form fast in the newly-formed nuclei of dark-matter haloes. Here we investigate the relevant physical processes and show that such a fast formation is plausible. The angular-momentum and the gas-supply problem for the formation/feeding of a supermassive black hole are strongly alleviated compared to a scenario in which gas is transported to the centre by tidal interaction of ready-assembled galaxies. The baryonic component of the newly-formed nucleus will cool catastrophically and settle into a self-gravitating angular momentum-supported disc of radius ∼ 100 pc. Gravitational instabilities and/or supernovae-induced turbulence will transport the gas further to the centre within less than 108 yr. In nuclei of very massive dark matter haloes with sufficiently deep potential well to retain the gas against feedback processes from massive stars and supernovae, concentration of a major fraction of the gas component of the nucleus within the central 1 pc and subsequent formation of a black hole seem unavoidable. A coeval short phase of efficient star formation could explain the observed high metallicities of quasars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 743-743
Author(s):  
Dong-Biao Kang

AbstractA self-gravitating system usually shows a quasi-universal density profile, such as the NFW profile of a simulated dark matter halo, the flat rotation curve of a spiral galaxy, the Sérsic profile of an elliptical galaxy, the King profile of a globular cluster and the exponential law of the stellar disk. It will be interesting if all of the above can be obtained from first principles. Based on the original work of White & Narayan (1987), we propose that if the self-bounded system is divided into infinite infinitesimal subsystems, the entropy of each subsystem can be maximized, but the whole system's gravity may just play the role of the wall, which may not increase the whole system's entropy St, and finally St may be the minimum among all of the locally maximized entropies (He & Kang 2010). For spherical systems with isotropic velocity dispersion, the form of the equation of state will be a hybrid of isothermal and adiabatic (Kang & He 2011). Hence this density profile can be approximated by a truncated isothermal sphere, which means that the total mass must be finite and our results can be consistent with observations (Kang & He 2011b). Our method requires that the mass and energy should be conserved, so we only compare our results with simulations of mild relaxation (i.e. the virial ratio is close to -1) of dissipationless collapse (Kang 2014), and the fitting also is well. The capacity can be calculated and is found not to be always negative as in previous works, and combining with calculations of the second order variation of the entropy, we find that the thermodynamical stability still can be true (Kang 2012) if the temperature tends to be zero. However, the cusp in the center of dark matter halos can not be explained, and more works will continue.The above work can be generalized to study the radial distribution of the disk (Kang 2015). The energy constraint automatically disappears in our variation, because angular momentum is much more important than energy for the disk-shape system. To simplify this issue, a toy model is taken: 2D gravity is adopted, then at large scale it will be consistent with a flat rotation curve; the bulge and the stellar disk are studied together. Then with constraints of mass and angular momentum, the calculated surface density can be consistent with the truncated, up-bended or standard exponential law. Therefore the radial distribution of the stellar disk may be determined by both the random and orbital motions of stars. In our fittings the central gravity is set to be nonzero to include the effect of asymmetric components.


2006 ◽  
Vol 649 (2) ◽  
pp. 591-598 ◽  
Author(s):  
C. Tonini ◽  
A. Lapi ◽  
P. Salucci

Sign in / Sign up

Export Citation Format

Share Document