rotation curves
Recently Published Documents


TOTAL DOCUMENTS

609
(FIVE YEARS 113)

H-INDEX

57
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Felipe J. Llanes-Estrada ◽  
Adriana Bariego Quintana ◽  
Oliver Manzanilla Carretero

2021 ◽  
Vol 923 (1) ◽  
pp. 68
Author(s):  
P.-A. Oria ◽  
B. Famaey ◽  
G. F. Thomas ◽  
R. Ibata ◽  
J. Freundlich ◽  
...  

Abstract We explore the predictions of Milgromian gravity (MOND) in the local universe by considering the distribution of the “phantom” dark matter (PDM) that would source the MOND gravitational field in Newtonian gravity, allowing an easy comparison with the dark matter framework. For this, we specifically deal with the quasi-linear version of MOND (QUMOND). We compute the “stellar-to-(phantom)halo mass relation” (SHMR), a monotonically increasing power law resembling the SHMR observationally deduced from spiral galaxy rotation curves in the Newtonian context. We show that the gas-to-(phantom)halo mass relation is flat. We generate a map of the Local Volume in QUMOND, highlighting the important influence of distant galaxy clusters, in particular Virgo. This allows us to explore the scatter of the SHMR and the average density of PDM around galaxies in the Local Volume, ΩPDM ≈ 0.1, below the average cold dark matter density in a ΛCDM universe. We provide a model of the Milky Way in its external field in the MOND context, which we compare to an observational estimate of the escape velocity curve. Finally, we highlight the peculiar features related to the external field effect in the form of negative PDM density zones in the outskirts of each galaxy, and test a new analytic formula for computing galaxy rotation curves in the presence of an external field in QUMOND. While we show that the negative PDM density zones would be difficult to detect dynamically, we quantify the weak-lensing signal they could produce for lenses at z ∼ 0.3.


2021 ◽  
Vol 922 (2) ◽  
pp. 249
Author(s):  
Yongmin Yoon ◽  
Changbom Park ◽  
Haeun Chung ◽  
Kai Zhang

Abstract We study how stellar rotation curves (RCs) of galaxies are correlated on average with morphology and stellar mass (M star) using the final release of Sloan Digital Sky Survey IV MaNGA data. We use the visually assigned T-types for the morphology indicator, and adopt a functional form for the RC that can model non-flat RCs at large radii. We discover that within the radial coverage of the MaNGA data, the popularly known flat rotation curve at large radii applies only to the particular classes of galaxies, i.e., massive late types (T-type ≥ 1, M star ≳ 1010.8 M ⊙) and S0 types (T-type = −1 or 0, M star ≳ 1010.0 M ⊙). The RC of late-type galaxies at large radii rises more steeply as M star decreases, and its slope increases to about +9 km s−1 kpc−1 at M star ≈ 109.7 M ⊙. By contrast, elliptical galaxies (T-type ≤ −2) have descending RCs at large radii. Their slope becomes more negative as M star decreases, and reaches as negative as −15 km s−1 kpc−1 at M star ≈ 1010.2 M ⊙. We also find that the inner slope of the RC is highest for elliptical galaxies with M star ≈ 1010.5 M ⊙, and decreases as T-type increases or M star changes away from 1010.5 M ⊙. The velocity at the turnover radius R t is higher for higher M star, and R t is larger for higher M star and later T-types. We show that the inner slope of the RC is coupled with the central surface stellar mass density, which implies that the gravitational potential of central regions of galaxies is dominated by baryonic matter. With the aid of simple models for matter distribution, we discuss what determines the shapes of RCs.


2021 ◽  
Vol 21 (11) ◽  
pp. 271
Author(s):  
Lin Wang ◽  
Da-Ming Chen

Abstract The tension between luminous matter and dynamical matter has long been an interesting and controversial topic in the investigation of galaxies. This is particularly true when we study spiral galaxies for which we have high quality observations of rotation curves. The solutions to the tension are proposed in two different approaches, one is the dark matter hypothesis and the other is MOdified Newtonian Dynamics (MOND) theory. When we test the solutions by using observational data of rotation curves, the controversy arises when we apply them to both low surface brightness (LSB) galaxies and high surface brightness (HSB) galaxies. Usually one likes to use the rotation curves of LSB galaxies, since dark matter is needed or the Newtonian acceleration falls below the characteristic acceleration a 0 in most regions of such galaxies, even near their centers. But for HSB galaxies, dark matter is needed or Newtonian acceleration falls below the characteristic acceleration a 0 only in their outer regions so it is helpful to single out HSB galaxies from some large sample to test the solutions. To this end, we employ a sub-sample of the rotation curves consisting of 45 non-bulgy HSB galaxies selected from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database to test two dark halo models (NFW and Burkert) and MOND. We find that, among the three models, the core-dominated Burkert halo model ( χ ν 2 = 1.00 ) provides a better description of the observed data than the NFW model ( χ ν 2 = 1.44 ) or MOND model ( χ ν 2 = 1.87 ). This is not consistent with the most recent numerical simulations, which tend to favor some cuspy density profiles for HSB galaxies. For MOND, when we take a 0 as a free parameter, there is no obvious correlation between a 0 and disk central surface brightness at 3.6 μm of these HSB spiral galaxies, which is in line with the basic assumption of MOND that a 0 should be a universal constant, but is surprisingly not consistent with the results when LSB galaxies are included. Furthermore, our fittings give a 0 an average value of (0.74 ±0.45) ×10−8 cm s−2, which only marginally supports the standard value of a 0 (1.21 ×10−8 cm s−2). Since the standard value of a 0 is strongly supported when both HSB and LSB galaxies are included in the large SPARC sample, we conclude that our slightly smaller value of a 0 cannot be explained by the so called external field effect in MOND theory.


Author(s):  
Abraao Capistrano ◽  
Monica C. Kalb ◽  
Carlos H. Coimbra-Araújo

By using geodesic equations to obtain a gravitational potential generated from a point-like source, we end up in the concept of a nearly Newtonian gravity to analyse effective potentials of quasi-circular orbits. By means of an approximate solution from an axially static and symmetric Weyl metric, we study an effective gravitational potential to obtain its related rotation curves, orbital planes and orbits. Moreover, using as initial condition a Plummer sphere, some prospects on star cluster disruption are also discussed in this framework.


2021 ◽  
Vol 36 (34) ◽  
Author(s):  
M. Novello ◽  
A. E. S. Hartmann ◽  
E. Bittencourt

We analyze the recently obtained static and spherically symmetric solutions of the Spinor Theory of Gravity (STG) which, in the weak field limit, presents an effective Newtonian potential that contains an extra logarithmic behavior. We apply this solution to the description of the galaxy rotation curves finding an interesting analogy with the dark matter halo profile proposed by Navarro, Frenk and White.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012043
Author(s):  
Berkan Amina ◽  
Boussahel Mounir

Abstract It is for the most part expected that dark matter is important to clarify the rotation of the galaxy, It has effectively been seen that the non-commutative geometry background can achieve this objective similarly. The objective of this study is to investigate a relationship between non-commutative geometry and certain aspect of dark matter. We are relying on a basic mathematical expression argument that indicates that the appearance of dark matter in galaxies and galaxy clusters with regard to flat rotation curves is similarly a result of non commutative geometry.


Author(s):  
Ahmad Sheykhi ◽  
Saskia Grunau

In this paper, we construct some new classes of topological black hole solutions in the context of mimetic gravity and investigate their properties. We study the uncharged and charged black holes, separately. We find the following novel results: (i) In the absence of a potential for the mimetic field, black hole solutions can address the flat rotation curves of spiral galaxies and alleviate the dark matter problem without invoking particle dark matter. Thus, mimetic gravity can provide a theoretical background for understanding flat galactic rotation curves through modifying Schwarzschild space–time. (ii) We also investigate the casual structure and physical properties of the solutions. We observe that in the absence of a potential, our solutions are not asymptotically flat, while in the presence of a negative constant potential for the mimetic field, the solutions are asymptotically anti-de Sitter (AdS). (iii) Finally, we explore the motion of massless and massive particles and give a list of the types of orbits. We study the differences of geodesic motion in the Einstein gravity and in mimetic gravity. In contrast to the Einstein gravity, massive particles always move on bound orbits and cannot escape the black hole in mimetic gravity. Furthermore, we find stable bound orbits for massless particles.


Sign in / Sign up

Export Citation Format

Share Document