Effect of silicon target porosity on laser ablation threshold: molecular dynamics simulation

2021 ◽  
Vol 18 (7) ◽  
pp. 076001
Author(s):  
A Yu Kharin ◽  
M S Grigoryeva ◽  
I N Zavestovskaya ◽  
V Yu Timoshenko
2012 ◽  
Vol 500 ◽  
pp. 351-356 ◽  
Author(s):  
Zeng Qiang Li ◽  
Jun Wang ◽  
Qi Wu

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.


Sign in / Sign up

Export Citation Format

Share Document