Fracture characteristics of bulk metallic glass under high speed impact

2012 ◽  
Vol 21 (5) ◽  
pp. 056101 ◽  
Author(s):  
Bao-Ru Sun ◽  
Zai-Ji Zhan ◽  
Bo Liang ◽  
Rui-Jun Zhang ◽  
Wen-Kui Wang
2008 ◽  
Vol 23 (4) ◽  
pp. 998-1008 ◽  
Author(s):  
Morgana Martin ◽  
Laszlo Kecskes ◽  
Naresh N. Thadhani

The high-strain-rate mechanical properties, deformation mechanisms, and fracture characteristics of a bulk metallic glass (BMG)-matrix composite, consisting of an amorphous Zr57Nb5Cu15.4Ni12.6Al10 (LM106) matrix with crystalline tungsten reinforcement particles, were investigated using gas gun anvil-on-rod impact experiments instrumented with velocity interferometry (VISAR) and high-speed digital photography. The time-resolved elastic-plastic wave propagation response obtained through VISAR and the transient deformation states captured with the camera provided information about dynamic strength and deformation modes of the composite. Comparison of experimental measurements with AUTODYN-simulated transient deformation profiles and free surface velocity traces allowed for validation of the pressure-hardening Drucker–Prager model, which was used to describe the deformation response of the composite. The impacted specimens recovered for post-impact microstructural analysis provided further information about the mechanisms of dynamic deformation and fracture characteristics. The overall results from experiments and modeling revealed a strain to failure of ∼45% along the length and ∼7% in area, and the fracture initiation stress was found to decrease with increasing impact velocity because of the negative strain-rate sensitivity of the BMG.


2006 ◽  
Vol 426 (1-2) ◽  
pp. 298-304 ◽  
Author(s):  
C. Yang ◽  
R.P. Liu ◽  
Z.J. Zhan ◽  
L.L. Sun ◽  
W.K. Wang

2008 ◽  
Vol 497 (1-2) ◽  
pp. 378-382 ◽  
Author(s):  
W.Z. Liang ◽  
J. Shen ◽  
J.F. Sun ◽  
L.Z. Wu ◽  
P.K. Liaw

2021 ◽  
Author(s):  
Christophe Then

Almost 60 years after the assassination of John F. Kennedy in 1963 the majority of Americans are still reluctant to believe the official reports of commissions from 1964 and again in 1976 that determined the direction of the shot resulting in the fatal head injury. Long-withheld, confidential government files released in 2017 reignited the controversy.The present investigation computationally simulated projectile-skull impacts from the direction specified in official reports and from three other directions. Detailed geometric models of the human head and ammunition, as well as known parameters from the assassination site served as the supportive base for analysis. Constitutive mathematical models for the impact of projectile material with skull tissues at supersonic speed were employed to analyze bone and bullet fragmentation mechanics. Simulated fracture characteristics of the bone and the bullet were compared with photographic and X-ray evidence. The most likely origin of the fatal shot was determined based on the degree of corresponding deformation and fragmentation between simulation and documented evidence. Computational corroboration could be established as physically consistent with high-speed impact from the rear, as established by the official commissions. Simulations of three other speculative shot origins did not correspond to the documented evidence.


2021 ◽  
Author(s):  
Zhiyu Hu ◽  
Cheng Yong Wang ◽  
Feng Ding ◽  
Tao Zhang ◽  
Lijuan Zheng ◽  
...  

Abstract Drilling is an indispensable machining operation for manufacturing bulk metallic glass (BMG) medical appliances, which generally have complicated shapes and require high dimensional accuracy. Unfortunately, the available research on the drilling of BMG is limited, and thus reliable guidelines for practical production are lacking. For this reason, this paper focuses on the BMG machinability in the industrial range. The high-speed drillings of BMG specimens were carried out in dry, wet (cutting fluid), and frozen (icing clamp) conditions. The relationship between the thrust force, torque, drilling energy, tool life, tool wear, as well as the hole quality (burrs, diameter deviation, taper angle, and circularity) were studied. The cooling methods and matching spindle speeds were optimized, and the investigation has shown that wet drilling with high spindle speed is the most suitable method for machining BMG as it resulted in the longest tool life and the highest hole quality. Tool failure modes for all cooling methods included plastic deformation and rake face abrasions, in addition to the abrasive and adhesive wear on flank face. The chip adhesion to the entry hole was identified as the primary cause for the large entry burr. Finally, the crown-shaped exit burr rupture triggered the warpage and tearing of the material around the hole.


Sign in / Sign up

Export Citation Format

Share Document