Modeling walking behavior of pedestrian groups with floor field cellular automaton approach

2014 ◽  
Vol 23 (8) ◽  
pp. 088901 ◽  
Author(s):  
Li-Li Lu ◽  
Gang Ren ◽  
Wei Wang ◽  
Yi Wang
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Xiong ◽  
Pingfu Yao ◽  
Xuedong Guo ◽  
Chenglong Chu ◽  
Wuhong Wang

To study the impact of traffic sign on pedestrian walking behavior, the paper applies cellular automaton to simulate one-way pedestrian flow. The channel is defined as a rectangle with one open entrance and two exits of equal width. Traffic sign showing that exit is placed with some distance in the middle front of the two exits. In the simulation, walking environment is set with various input density, width of exit, width and length of the channel, and distance of the traffic sign to exit. Simulation results indicate that there exists a critical distance from the traffic sign to exit for a given channel layout. At the critical distance, pedestrian flow fluctuates. Below such critical distance, flow is getting larger with the increase of input density. However, the flow drops sharply when the input density is over a critical level. If the distance is a little bit further than the critical distance, the largest flow occurs and the flow can remain steady no matter what input density will be.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Li ◽  
Jing Wang ◽  
Yuanfang Dong ◽  
Hongfei Jia ◽  
Yanzhong Li

A new concept called the extended weaving area is proposed to relieve the conflicts and clogging caused by pedestrian weaving in both time and space in large passenger terminal. The cellular automaton model that considers pedestrian walking habits based on the floor field is adopted. Numerical simulations are carried out in MATLAB environment to explore the relationship between the emptying time and bottleneck setting when four groups of pedestrians walk to four exits through the weaving areas with different settings. It is found that, by using improved extended weaving area settings, the stress of the weaving area could be relieved in both time and space; thus the efficiency of pedestrians passing could be improved. Based on the simulation, the threshold of single bottleneck width in the extended weaving area is also given in this research.


2015 ◽  
Vol 420 ◽  
pp. 294-303 ◽  
Author(s):  
Zhijian Fu ◽  
Xiaodong Zhou ◽  
Kongjin Zhu ◽  
Yanqiu Chen ◽  
Yifan Zhuang ◽  
...  

2017 ◽  
Vol 28 (05) ◽  
pp. 1750059 ◽  
Author(s):  
Zhijian Fu ◽  
Liang Xia ◽  
Hongtai Yang ◽  
Xiaobo Liu ◽  
Jian Ma ◽  
...  

Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.


Author(s):  
A. Schadschneider ◽  
C. Eilhardt ◽  
S. Nowak ◽  
R. Will

2019 ◽  
Vol 100 ◽  
pp. 61-72 ◽  
Author(s):  
Danyan Huang ◽  
Siuming Lo ◽  
Juan Chen ◽  
Zhijian Fu ◽  
Yuan Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document