Collision enhanced hyper-damping in nonlinear elastic metamaterial

2022 ◽  
Author(s):  
Miao Yu ◽  
Xin Fang ◽  
Dianlong Yu ◽  
Jihong Wen ◽  
Li Cheng

Abstract Nonlinear elastic metamaterial, a topic which has attracted extensive attention in recent years, can enable broadband vibration reduction under relatively large amplitude. The combination of damping and strong nonlinearity in metamaterials may entail auxetic effects and offer the capability for low-frequency and broadband vibration reduction. However, there exists a clear lack of proper design methods as well as a deficiency in understanding properties arising from this concept. To tackle this problem, this paper numerically demonstrates that the nonlinear elastic metamaterials, consisting of sandwich damping layers and collision resonators, can generate very robust hyper-damping effect, conducive to efficient and broadband vibration suppression. The collision-enhanced hyper damping is persistently present in a large parameter space, ranging from small to large amplitudes, and for small and large damping coefficient. The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials. We report the design concept, properties and mechanisms of the hyper-damping and its effect on vibration transmission. This paper reveals new properties offered by nonlinear elastic metamaterials, and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.

2019 ◽  
Vol 296 ◽  
pp. 01010
Author(s):  
Qian Sun ◽  
Yongpeng Wen ◽  
Yu Zou

To reduce the bounce and the pitch vibration of carbody, a vertical dynamic model for urban rail vehicles is established to analyze the vibration response of the carbody in the low frequency range. In this paper, different methods of single-degree-of-freedom dynamic vibration absorber to suppress the vibration for carbody are investigated. The limits of single-degree-of-freedom dynamic vibration absorber to the vibration reduction effect of carbody are pointed out. After that, the design of a composite dynamic vibration absorber including a double oscillator structure is introduced. A vibration discreteness index is used to evaluate dynamic vibration absorbers with various designs for the vibration damping performance. Finally, the vibration reduction performance of the composite dynamic vibration absorber is verified by Sperling’s riding index. The results demonstrate that the performance of the single degree of freedom dynamic vibration absorber attached to a carbody may increase the vibration within a partial scope, when the peak frequency of vibration is far away from the design frequency. The installation of the composite dynamic vibration absorber vibration provides gentler running experience for passengers.


2003 ◽  
Vol 10 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Chul H. Park ◽  
Daniel J. Inman

Piezoceramic material connected to an electronic shunt branch circuit has formed a successful vibration reduction device. One drawback of the conventional electronic shunt circuit is the large inductance required when suppressing low frequency vibration modes. Also, the large internal resistance associated with this large inductance exceeds the optimal design resistance needed for low frequency vibration suppression. To solve this problem, a modified and enhanced piezoelectric shunt circuit is designed and analyzed by using mechanical-electrical analogies to present the physical interpretation. The enhanced shunt circuit developed in this paper is proved to significantly reduce the targeted vibration mode of a cantilever beam, theoretically and experimentally.


2020 ◽  
Author(s):  
Simon H. Martin ◽  
William Amos

ABSTRCTThe detection of introgression from genomic data is transforming our view of species and the origins of adaptive variation. Among the most widely used approaches to detect introgression is the so-called ABBA BABA test or D statistic, which identifies excess allele sharing between non-sister taxa. Part of the appeal of D is its simplicity, but this also limits its informativeness, particularly about the timing and direction of introgression. Here we present a simple extension, D frequency spectrum or DFS, in which D is partitioned according to the frequencies of derived alleles. We use simulations over a large parameter space to show how DFS caries information about various factors. In particular, recent introgression reliably leads to a peak in DFS among low-frequency derived alleles, whereas violation of model assumptions can lead to a lack of signal at low-frequencies. We also reanalyse published empirical data from six different animal and plant taxa, and interpret the results in the light of our simulations, showing how DFS provides novel insights. We currently see DFS as a descriptive tool that will augment both simple and sophisticated tests for introgression, but in the future it may be usefully incorporated into probabilistic inference frameworks.


Author(s):  
Simon H Martin ◽  
William Amos

Abstract The detection of introgression from genomic data is transforming our view of species and the origins of adaptive variation. Among the most widely used approaches to detect introgression is the so-called ABBA–BABA test or D-statistic, which identifies excess allele sharing between nonsister taxa. Part of the appeal of D is its simplicity, but this also limits its informativeness, particularly about the timing and direction of introgression. Here we present a simple extension, D frequency spectrum or DFS, in which D is partitioned according to the frequencies of derived alleles. We use simulations over a large parameter space to show how DFS carries information about various factors. In particular, recent introgression reliably leads to a peak in DFS among low-frequency derived alleles, whereas violation of model assumptions can lead to a lack of signal at low frequencies. We also reanalyze published empirical data from six different animal and plant taxa, and interpret the results in the light of our simulations, showing how DFS provides novel insights. We currently see DFS as a descriptive tool that will augment both simple and sophisticated tests for introgression, but in the future it may be usefully incorporated into probabilistic inference frameworks.


2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


1997 ◽  
Vol 119 (1) ◽  
pp. 20-27
Author(s):  
R. G. Longoria ◽  
V. A. Narayanan

This paper presents the modeling and analysis of a novel vibration suppression device. This reflector system exerts inertial forces, induced by tuned pendular motion, to control translational vibration of a primary system. Tuning of the reflector critically depends on the parameters of the pendula and on the rotational speed at which they are spun about an axis oriented parallel to the undesired motion. Consequently, one of its most appealing attributes is this devices’s ability to be tuned to, and thus actively track, the dominant frequency of disturbance forces. The paper describes how governing equations from an integrated physical model are developed using a bond graph approach and then used to derive relations applicable in design of an inertial reflector system. It is shown how the model supports component selection and tradeoff studies as well as simulation. Experimental results from testing of a laboratory realization of a prototype system are used to verify the design and to compare with simulation of a mathematical model. The results from the laboratory demonstrate the ability of the inertial reflector to control steady and transient vibration, and the favorable results suggest extended investigation for active vibration control situations. In particular, applications in low frequency vibration mitigation are promising.


Author(s):  
J. Hannsen Su

Abstract Conventional vibration isolation mounts are not as effective as expected on a practical foundation whose resonant frequencies normally are within the bandwidth of interest. In addition, the low frequency enhancement is a characteristic of the passive mounts. Applying inertia actuators to the bottom attachment plate of the conventional mounts overcomes these shortcomings and enhances their performance significantly. This design concept has universal application since it is applicable to any dynamic system. It requires very little power and force capacity, i.e., a small percentage of the disturbance force, from the actuators to be effective for frequencies higher than the resonant frequency of the mount itself. The effectiveness of the proposed mounts for the machinery is demonstrated on the load transmissibility reduction at the foundation support (fixed end) due to disturbance from machinery above mounts. On the other hand, the vibration magnitude reduction of equipment above mounts due to disturbance from the foundation is used for evaluating the equipment isolation effectiveness. There is no stabilty or degradation problem when a number of the passive-active mounts are used on the same foundation. Furthermore, the more of this type of mounts used on a foundation the more effective the vibration suppression and the smaller actuator force requirement for each passive-active mount.


2021 ◽  
Author(s):  
Yu Xue ◽  
Jinqiang Li ◽  
Yu Wang ◽  
Fengming Li

Abstract This paper aims to explore the actual working mechanism of sandwich-like meta-plates by periodically attaching nonlinear mass-beam-spring (MBS) resonators for low-frequency wave absorption. The nonlinear MBS resonator consists of a mass, a cantilever beam and a spring that can provide negative stiffness in the transverse vibration of the resonator, and its stiffness is tunable by changing the parameters of the spring. Considering the nonlinear stiffness of the resonator, the energy method is applied to obtain the dispersion relation of the sandwich-like meta-plate and the band-gap bounds related to the amplitude of resonator is derived by dispersion analysis. For the finite sized sandwich-like meta-plate with the fully free boundary condition subjected to external excitations, its dynamic equation is also established by the Galerkin method. The frequency response analysis of the meta-plate is carried out by the numerical simulation, whose band-gap range demonstrates good agreement with the theoretical one. Results show that the band-gap range of the present meta-plate is tunable by the design of the structural parameters of the MBS resonator. Furthermore, by analyzing the vibration suppression of the finite sized meta-plate, it can be observed that the nonlinearity of resonators can widen the wave attenuation range of meta-plate.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wenhua Cai ◽  
Bujun Yu ◽  
Fajong Wu ◽  
Jianhua Shao

In order to study the influence of traveling wave effect on the seismic response and damping effect of suspended structure, a series of shaking table tests of the 1 : 20 suspended structure have been carried out to compare and analyze the dynamic responses of suspended structures under two points and a consistent input. The vibration damping effect and vibration reduction law of suspended structure are discussed at different apparent wave velocity and in the different connection. The research shows that the damping suspended structure has a good damping effect, and the amplitude reduction of the top displacement peak response is up to 15%, which corresponds to smaller apparent velocities. Moreover, the upper bound of the maximum acceleration response at the structures’ top under nonuniform input motions equals that of the uniform motion. However, there is a hysteresis in the acceleration response under wave travelling excitations, and the smaller the apparent wave velocity, the more obvious the hysteresis.


Sign in / Sign up

Export Citation Format

Share Document