scholarly journals Accretion and jet power in active galactic nuclei

2011 ◽  
Vol 11 (11) ◽  
pp. 1266-1278 ◽  
Author(s):  
Luigi Foschini
2008 ◽  
Vol 482 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Y. Li ◽  
D.-X. Wang ◽  
Z.-M. Gan

2020 ◽  
Vol 495 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Caner Ünal ◽  
Abraham Loeb

ABSTRACT The Fundamental Plane (FP) of black hole (BH) activity in galactic nuclei relates X-ray and radio luminosities to BH mass and accretion rate. However, there is a large scatter exhibited by the data, which motivated us for a new variable. We add BH spin as a new variable and estimate the spin dependence of the jet power and disc luminosity in terms of radio and X-ray luminosities. We assume the Blandford–Znajek process as the main source of the outflow, and find that the jet power depends on BH spin stronger than quadratically at moderate and large spin values. We perform a statistical analysis for 10 active galactic nuclei (AGNs) which have sub-Eddington accretion rates and whose spin values are measured independently via the reflection or continuum-fitting methods, and find that the spin-dependent relation describes the data significantly better. This analysis, if supported with more data, could imply not only the spin dependence of the FP relation, but also the Blandford–Znajek process in AGN jets.


2006 ◽  
Vol 637 (2) ◽  
pp. 669-681 ◽  
Author(s):  
Yi Liu ◽  
Dong Rong Jiang ◽  
Min Feng Gu

2018 ◽  
Vol 14 (S342) ◽  
pp. 197-200 ◽  
Author(s):  
Elena E. Nokhrina

AbstractThe magneto hydrodynamic models of relativistic jets from active galactic nuclei predict the jet power transported by the Poynting flux at the jet base, setting the correlation between the jet power and the total magnetic flux. For highly collimated jets taking the transversal structure into account allows to rewrite this correlation through the observed jet properties such as spectral flux and core shift. Applying this method we find that, for the sample of 48 sources, their jet power distribution is well peaked at the theoretically predicted level.


2010 ◽  
Vol 1 (2) ◽  
pp. 111-115
Author(s):  
O. E. Volvach ◽  
L. N. Volvach ◽  
V. S. Bichkova ◽  
M. S. Kardashev ◽  
M. G. Larionov ◽  
...  

1997 ◽  
Vol 488 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Paul S. Smith ◽  
Gary D. Schmidt ◽  
Richard G. Allen ◽  
Dean C. Hines

1997 ◽  
Vol 487 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Gang Bao ◽  
Petr Hadrava ◽  
Paul J. Wiita ◽  
Ying Xiong

Sign in / Sign up

Export Citation Format

Share Document