scholarly journals On Spin dependence of the Fundamental Plane of black hole activity

2020 ◽  
Vol 495 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Caner Ünal ◽  
Abraham Loeb

ABSTRACT The Fundamental Plane (FP) of black hole (BH) activity in galactic nuclei relates X-ray and radio luminosities to BH mass and accretion rate. However, there is a large scatter exhibited by the data, which motivated us for a new variable. We add BH spin as a new variable and estimate the spin dependence of the jet power and disc luminosity in terms of radio and X-ray luminosities. We assume the Blandford–Znajek process as the main source of the outflow, and find that the jet power depends on BH spin stronger than quadratically at moderate and large spin values. We perform a statistical analysis for 10 active galactic nuclei (AGNs) which have sub-Eddington accretion rates and whose spin values are measured independently via the reflection or continuum-fitting methods, and find that the spin-dependent relation describes the data significantly better. This analysis, if supported with more data, could imply not only the spin dependence of the FP relation, but also the Blandford–Znajek process in AGN jets.

2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


2012 ◽  
Vol 8 (S290) ◽  
pp. 37-40
Author(s):  
O. González-Martín ◽  
S. Vaughan

AbstractWe have performed a uniform analysis of the power spectrum densities (PSDs) of 104 nearby (z<0.4) active galactic nuclei (AGN) using 209 XMM-Newton/pn observations, including several AGN classes. These PSDs span ≃ 3 decades in temporal frequencies, ranging from minutes to days. We have fitted each PSD to two models: (1) a single power-law model and (2) a bending power-law model. A fraction of 72% show significant variability. The PSD of the majority of the variable AGN was well described by a simple power-law with a mean index of α = 2.01±0.01. In 15 sources we found that the bending power law model was preferred with a mean slope of α = 3.08±0.04 and a mean bend frequency of 〈νb〉 ≃ 2 × 10−4 Hz. Only KUG 1031+398 (RE J1034+396) shows evidence for quasi-periodic oscillations. The ‘fundamental plane’ relating variability timescale, black hole mass, and luminosity is demonstrated using the new X-ray timing results presented here together with a compilation of the previously detected timescales from the literature.


2020 ◽  
Vol 493 (1) ◽  
pp. L132-L137 ◽  
Author(s):  
E Tremou ◽  
S Corbel ◽  
R P Fender ◽  
P A Woudt ◽  
J C A Miller-Jones ◽  
...  

ABSTRACT The radio–X-ray correlation that characterizes accreting black holes at all mass scales – from stellar mass black holes in binary systems to supermassive black holes powering active galactic nuclei – is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows – or jets – in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary (XRB) GX 339–4 in quiescence using the Meer Karoo Array Telescope (MeerKAT) radio telescope and Swift X-ray Telescope instrument on board the Neil Gehrels Swift Observatory, probing the lower end of the radio–X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system.


2018 ◽  
Vol 616 ◽  
pp. A152 ◽  
Author(s):  
Payaswini Saikia ◽  
Elmar Körding ◽  
Deanne L. Coppejans ◽  
Heino Falcke ◽  
David Williams ◽  
...  

We present a sub-arcsec resolution radio imaging survey of a sample of 76 low-luminosity active galactic nuclei (LLAGN) that were previously not detected with the Very Large Array at 15 GHz. Compact, parsec-scale radio emission has been detected above a flux density of 40 μ Jy in 60% (45 of 76) of the LLAGN sample. We detect 20 out of 31 (64%) low-ionization nuclear emission-line region (LINER) nuclei, ten out of 14 (71%) low-luminosity Seyfert galaxies, and 15 out of 31 (48%) transition objects. We use this sample to explore correlations between different emission lines and the radio luminosity. We also populate the X-ray and the optical fundamental plane of black hole activity and further refine its parameters. We obtain a fundamental plane relation of log LR = 0.48 (±0.04) log LX + 0.79 (±0.03) log M and an optical fundamental plane relation of log LR = 0.63 (±0.05) log L[O III] + 0.67 (±0.03) log M after including all the LLAGN detected at high resolution at 15 GHz, and the best-studied hard-state X-ray binaries (luminosities are given in erg s−1 while the masses are in units of solar mass). Finally, we find conclusive evidence that the nuclear 15 GHz radio luminosity function (RLF) of all the detected Palomar Sample LLAGN has a turnover at the low-luminosity end, and is best-fitted with a broken power law. The break in the power law occurs at a critical mass accretion rate of 1.2 × 10−3 M⊙ yr−1, which translates to an Eddington ratio of ṁEdd ~ 5.1 × 10−5, assuming a black hole mass of 109 M⊙. The local group stands closer to the extrapolation of the higher-luminosity sources, and the classical Seyferts agree with the nuclear RLF of the LLAGN in the local universe.


2014 ◽  
Vol 10 (S312) ◽  
pp. 249-251
Author(s):  
Ai-Jun Dong ◽  
Qingwen Wu ◽  
Xiao-Feng Cao

AbstractWe explore X-ray spectral evolution and radio–X-ray correlation simultaneously for four X-ray binaries (XRBs). We find that hard X-ray photon indices, Γ, are anti- and positively correlated to X-ray fluxes when the X-ray flux, F3–9keV, is below and above a critical flux, FX,crit, which may be regulated by ADAF and disk-corona respectively. We find that the data points with anti-correlation of Γ-F3–9keV follow the universal radio–X-ray correlation of FR ∝ FXb (b ~ 0.5-0.7), while the data points with positive X-ray spectral evolution follow a steeper radio–X-ray correlation (b ~ 1.4, the so-called ‘outliers track’). The bright active galactic nuclei (AGNs) share similar X-ray spectral evolution and radio–X-ray correlation as XRBs in ‘outliers’ track, and we present a new fundamental plane of log LR=1.59+0.28−0.22 log LX−0.22+0.19−0.20 log MBH−28.97+0.45−0.45 for these radiatively efficient BH sources.


1998 ◽  
Vol 500 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Kiyoshi Hayashida ◽  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Hajime Inoue

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


1998 ◽  
Vol 188 ◽  
pp. 141-144
Author(s):  
K. Iwasawa

X-ray spectroscopy of the broad iron line has revealed some relativistic effects caused by strong gravity about a black hole in active galactic nuclei (AGN). Recent results from ASCA observations of AGNs are reviewed.


2019 ◽  
Vol 15 (S350) ◽  
pp. 274-277
Author(s):  
Junjie Mao

AbstractPhotoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rather demanding or challenging for the current generation of (grating) spectrometers. The next generation of spectrometers will certainly provide data with better quality and large quantity, leading to tight constraints on the location and the kinetic power of AGN outflows. This contribution summarizes the state-of-the-art in this field.


Sign in / Sign up

Export Citation Format

Share Document