scholarly journals Improved alpha-beta power reduction via combined electrical and ultrasonic stimulation in a parkinsonian cortex-basal ganglia-thalamus computational model

Author(s):  
Thomas Tarnaud ◽  
Wout Joseph ◽  
Ruben Schoeters ◽  
Luc Martens ◽  
Emmeric Tanghe

Abstract Objective. To investigate computationally the interaction of combined electrical and ultrasonic modulation of isolated neurons and of the Parkinsonian cortex-basal ganglia-thalamus loop. Approach. Continuous-wave or pulsed electrical and ultrasonic neuromodulation is applied to isolated Otsuka plateau-potential generating subthalamic nucleus (STN) and Pospischil regular, fast and low-threshold spiking cortical cells in a temporally alternating or simultaneous manner. Similar combinations of electrical/ultrasonic waveforms are applied to a Parkinsonian biophysical cortex-basal ganglia-thalamus neuronal network. Ultrasound-neuron interaction is modelled respectively for isolated neurons and the neuronal network with the NICE and SONIC implementations of the bilayer sonophore underlying mechanism. Reduction in α-β spectral energy is used as a proxy to express improvement in Parkinson’s disease by insonication and electrostimulation. Main results. Simultaneous electro-acoustic stimulation achieves a given level of neuronal activity at lower intensities compared to the separate stimulation modalities. Conversely, temporally alternating stimulation with 50 Hz electrical and ultrasound pulses is capable of eliciting 100 Hz STN firing rates. Furthermore, combination of ultrasound with hyperpolarizing currents can alter cortical cell relative spiking regimes. In the Parkinsonian neuronal network, continuous-wave and pulsed ultrasound reduce pathological oscillations by different mechanisms. High-frequency pulsed separated electrical and ultrasonic deep brain stimulation (DBS) reduce pathological α-β power by entraining STN-neurons. In contrast, continuous-wave ultrasound reduces pathological oscillations by silencing the STN. Compared to the separated stimulation modalities, temporally simultaneous or alternating electro-acoustic stimulation can achieve higher reductions in α-β power for the same safety contraints on electrical/ultrasonic intensity. Significance. Focused ultrasound has the potential of becoming a non-invasive alternative of conventional DBS for the treatment of Parkinson’s disease. Here, we elaborate on proposed benefits of combined electro-acoustic stimulation in terms of improved dynamic range, efficiency, spatial resolution, and neuronal selectivity.

2021 ◽  
Author(s):  
Thomas Tarnaud ◽  
Wout Joseph ◽  
Ruben Schoeters ◽  
Luc Martens ◽  
Emmeric Tanghe

AbstractObjectiveTo investigate computationally the interaction of combined electrical and ultrasonic modulation of isolated neurons and of the Parkinsonian cortex-basal ganglia-thalamus loop.MethodsContinuous-wave or pulsed electrical and ultrasonic neuromodulation is applied to isolated Otsuka plateau-potential generating subthalamic nucleus (STN) and Pospischil regular, fast and low-threshold spiking cortical cells in a temporally-alternating or simultaneous manner. Similar combinations of electrical/ultrasonic waveforms are applied to a Parkinsonian biophysical cortex-basal ganglia-thalamus neuronal network. Ultrasound-neuron interaction is modelled respectively for isolated neurons and the neuronal network with the NICE and SONIC implementations of the bilayer sonophore underlying mechanism. Reduction in α—β spectral energy is used as a proxy to express improvement in Parkinson’s disease by insonication and electrostimulation.ResultsSimultaneous electro-acoustic stimulation achieves a given level of neuronal activity at lower intensities compared to the separate stimulation modalities. Conversely, temporally alternating stimulation with 50 Hz electrical and ultrasound pulses is capable of eliciting 100 Hz STN firing rates. Furthermore, combination of ultrasound with hyperpolarizing currents can alter cortical cell relative spiking regimes. In the Parkinsonian neuronal network, high-frequency pulsed separated electrical and ultrasonic deep brain stimulation (DBS) reduce pathological α — β power by entraining STN-neurons. In contrast, continuous-wave ultrasound reduces pathological oscillations by silencing the STN. Compared to the separated stimulation modalities, temporally simultaneous or alternating electro-acoustic stimulation can achieve higher reductions in α — β power for the same contraints on electrical/ultrasonic intensity.ConclusionContinuous-wave and pulsed ultrasound reduce pathological oscillations by different mechanisms. Electroacoustic stimulation further improves α— β power for given safety limits and is capable of altering cortical relative spiking regimes.Significancefocused ultrasound has the potential of becoming a non-invasive alternative of conventional DBS for the treatment of Parkinson’s disease. Here, we elaborate on proposed benefits of combined electro-acoustic stimulation in terms of improved dynamic range, efficiency, resolution, and neuronal selectivity.


Physiology ◽  
2002 ◽  
Vol 17 (2) ◽  
pp. 51-55 ◽  
Author(s):  
José A. Obeso ◽  
María C. Rodríguez-Oroz ◽  
Manuel Rodríguez ◽  
Javier Arbizu ◽  
José M. Giménez-Amaya

The basal ganglia are part of a neuronal network organized in parallel circuits. The “motor circuit” is most relevant to the pathophysiology of movement. Abnormal increment or reduction in the inhibitory output activity of basal ganglia give rise, respectively, to poverty and slowness of movement (i.e., Parkinson's disease) or dyskinesias.


1989 ◽  
Vol 28 (03) ◽  
pp. 92-94 ◽  
Author(s):  
C. Neumann ◽  
H. Baas ◽  
R. Hefner ◽  
G. Hör

The symptoms of Parkinson’s disease often begin on one side of the body and continue to do so as the disease progresses. First SPECT results in 4 patients with hemiparkinsonism using 99mTc-HMPAO as perfusion marker are reported. Three patients exhibited reduced tracer uptake in the contralateral basal ganglia One patient who was under therapy for 1 year, showed a different perfusion pattern with reduced uptake in both basal ganglia. These results might indicate reduced perfusion secondary to reduced striatal neuronal activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Veronica Ghiglieri ◽  
Vincenza Bagetta ◽  
Valentina Pendolino ◽  
Barbara Picconi ◽  
Paolo Calabresi

In Parkinson’s disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID.


2014 ◽  
Vol 40 (2) ◽  
pp. 2406-2416 ◽  
Author(s):  
Stéphanie Bissonnette ◽  
Sophie Muratot ◽  
Nathalie Vernoux ◽  
François Bezeau ◽  
Frédéric Calon ◽  
...  

2012 ◽  
Vol 123 (10) ◽  
pp. e108
Author(s):  
J. Sarnthein ◽  
D. Péus ◽  
H. Baumann-vogel ◽  
C.R. Baumann ◽  
O. Sürücü

1999 ◽  
Vol 126 (2) ◽  
pp. 139-148 ◽  
Author(s):  
R. Grasso ◽  
A. Peppe ◽  
F. Stratta ◽  
D. Angelini ◽  
M. Zago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document