scholarly journals Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

2009 ◽  
Vol 2009 (08) ◽  
pp. P08015 ◽  
Author(s):  
S C Lim ◽  
L P Teo
Author(s):  
Peng Guo ◽  
Caibin Zeng ◽  
Changpin Li ◽  
YangQuan Chen

AbstractWe study analytically and numerically the fractional Langevin equation driven by the fractional Brownian motion. The fractional derivative is in Caputo’s sense and the fractional order in this paper is α = 2 − 2H, where H ∈ ($\tfrac{1} {2} $, 1) is the Hurst parameter (or, index). We give numerical schemes for the fractional Langevin equation with or without an external force. From the figures we can find that the mean square displacement of the fractional Langevin equation has the property of the anomalous diffusion. When the fractional order tends to an integer, the diffusion reduces to the normal diffusion.


2014 ◽  
Vol 09 (04) ◽  
pp. 381-396 ◽  
Author(s):  
Alessandro Taloni ◽  
Fabio Marchesoni

We review the latest advances in the analytical modelling of single file diffusion. We focus first on the derivation of the fractional Langevin equation that describes the motion of a tagged file particle. We then propose an alternative derivation of the very same stochastic equation by starting from the diffusion-noise formalism for the time evolution of the file density. [Formula: see text] Special Issue Comments: This article presents mathematical formulations and results on the dynamics in files with applied potential, yet also general files. This article is connected to the Special Issue articles about the zig zag phenomenon,72 advanced statistical properties in single file dynamics,73 and expanding files.74


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


Sign in / Sign up

Export Citation Format

Share Document