Erratum: Multifractal detrended fluctuation analysis of sunspot time series

2011 ◽  
Vol 2011 (09) ◽  
pp. E09001 ◽  
Author(s):  
M Sadegh Movahed ◽  
G R Jafari ◽  
F Ghasemi ◽  
Sohrab Rahvar ◽  
M Reza Rahimi Tabar
Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1157
Author(s):  
Faheem Aslam ◽  
Saima Latif ◽  
Paulo Ferreira

The use of multifractal approaches has been growing because of the capacity of these tools to analyze complex properties and possible nonlinear structures such as those in financial time series. This paper analyzes the presence of long-range dependence and multifractal parameters in the stock indices of nine MSCI emerging Asian economies. Multifractal Detrended Fluctuation Analysis (MFDFA) is used, with prior application of the Seasonal and Trend Decomposition using the Loess (STL) method for more reliable results, as STL separates different components of the time series and removes seasonal oscillations. We find a varying degree of multifractality in all the markets considered, implying that they exhibit long-range correlations, which could be related to verification of the fractal market hypothesis. The evidence of multifractality reveals symmetry in the variation trends of the multifractal spectrum parameters of financial time series, which could be useful to develop portfolio management. Based on the degree of multifractality, the Chinese and South Korean markets exhibit the least long-range dependence, followed by Pakistan, Indonesia, and Thailand. On the contrary, the Indian and Malaysian stock markets are found to have the highest level of dependence. This evidence could be related to possible market inefficiencies, implying the possibility of institutional investors using active trading strategies in order to make their portfolios more profitable.


2010 ◽  
Vol 88 (8) ◽  
pp. 545-551 ◽  
Author(s):  
Srimonti Dutta

The fluctuation of SENSEX in the Indian stock market for the period Jan 2003–Dec 2009 is studied using the multifractal detrended fluctuation analysis (MFDFA) approach. The effect of the fall in the stock market in 2008 is also investigated. The data exhibits that the nonstationary time series of SENSEX fluctuations are multifractal in nature. An increase in the degree of multifractality prior to the anomalous behaviour in the SENSEX values is also observed. The increase in the degree of correlation for the period 2007–2009 is also responsible for the meteoric rise and the catastrophic fall in the values of SENSEX.


Fractals ◽  
2015 ◽  
Vol 23 (02) ◽  
pp. 1550010 ◽  
Author(s):  
XIAOHUI YUAN ◽  
BIN JI ◽  
YANBIN YUAN ◽  
YUEHUA HUANG ◽  
XIANSHAN LI ◽  
...  

Multifractal detrended fluctuation analysis (MF-DFA) method is applied to analyze the daily electric load time series. The results of the MF-DFA show that there are three crossover timescales at seven days, 15 days and 365 days approximately in the fluctuation function. Also we find that these fluctuations have multifractal nature with long range correlation behavior. The multifractal singularity spectrum of the daily electric load series has been fitted by the quadratic function model. Comparing the MF-DFA results of the original load series with those of shuffled and surrogate series, it concludes that the multifractal characteristics of the daily electric load time series is due to both broadness of the probability density function and long-range correlation, and the long-range correlation is dominant.


2021 ◽  
Author(s):  
Sombit Chakraborty ◽  
Surajit Chattopadhyay

Abstract The present study reports a multifractal detrended fluctuation analysis of total ozone time series. Considering daily total ozone concentration (TOC) data ranging from 2015 to 2019, we have created a new profile by subtracting the trend. Subsequently we have divided the profile \({X}_{i}\) into non intersecting segments of equal time scale varying from 25 to 30. Fitting a second order polynomial, we have eliminated the local trend from each segment and thereafter we have computed the detrended variance. Finally the multifractal behaviour has been identified and the singularity spectra has helped us in obtaining the generalised Hurst exponent which in this case has come out to be greater than 0.5.


2021 ◽  
Vol 328 (1) ◽  
pp. 425-434
Author(s):  
Muhammad Rafique ◽  
Javid Iqbal ◽  
Kashif Javed Lone ◽  
Kimberlee Jane Kearfott ◽  
Saeed Ur Rahman ◽  
...  

2012 ◽  
Vol 4 ◽  
pp. 259-262 ◽  
Author(s):  
Zhan Xu ◽  
Jian Wei Wan ◽  
Gang Li ◽  
Fang Su

We present the multifractal detrended fluctuation analysis (MFDFA) for target detection within sea clutter. The multifractal character of the sea clutter time series is discussed. The great hurst parameter differences between sea clutter and target by the detrended fluctuation analysis are available. Experimental results of IPIX datasets show that the proposed method performs better than that based on fluctuation analysis (FA). This type of analysis is promising an efficient framework for analysis of sea radar signals with several potential applications.


2012 ◽  
Vol 19 (6) ◽  
pp. 657-665 ◽  
Author(s):  
Z. G. Yu ◽  
V. Anh ◽  
R. Eastes ◽  
D.-L. Wang

Abstract. The multifractal properties of the daily solar X-ray brightness, Xl and Xs, during the period from 1 January 1986 to 31 December 2007 which includes two solar cycles are examined using the universal multifractal approach and multifractal detrended fluctuation analysis. Then we convert these time series into networks using the horizontal visibility graph technique. Multifractal analysis of the resulting networks is performed using an algorithm proposed by us. The results from the multifractal analysis show that multifractality exists in both raw daily time series of X-ray brightness and their horizontal visibility graphs. It is also found that the empirical K(q) curves of raw time series can be fitted by the universal multifractal model. The numerical results on the raw data show that the Solar Cycle 23 is weaker than the Solar Cycle 22 in multifractality. The values of h(2) from multifractal detrended fluctuation analysis for these time series indicate that they are stationary and persistent, and the correlations in the time series of Solar Cycle 23 are stronger than those for Solar Cycle 22. Furthermore, the multifractal scaling for the networks of the time series can reflect some properties which cannot be picked up by using the same analysis on the original time series. This suggests a potentially useful method to explore geophysical data.


2012 ◽  
Vol 23 (10) ◽  
pp. 1250070
Author(s):  
MIN LIN ◽  
SHUANG-XI YAN ◽  
GANG ZHAO ◽  
GANG WANG

The scaling properties of the avalanches' interevent time series in a modified Olami–Feder–Christensen (OFC) earthquake model on assortative scale-free networks have been investigated. We analyze the interevent time of avalanches with size larger than or equal to S th by using rescaled range (R/S) analysis and detrended fluctuation analysis (DFA) methods. Our results demonstrate positive correlation and persistent feature of the interevent time series. The multifractal detrended fluctuation analysis (MF-DFA) has evidenced differences among the avalanches' interevents interval with different S th . We determine generalized Hurst exponent and singularity spectrum and find that the interevent time series have multifractal nature.


Sign in / Sign up

Export Citation Format

Share Document