scholarly journals Investigation graph isomorphism problem via entanglement entropy in strongly regular graphs

2015 ◽  
Vol 2015 (8) ◽  
pp. P08013 ◽  
Author(s):  
M A Jafarizadeh ◽  
F Eghbalifam ◽  
S Nami
2005 ◽  
Vol 5 (6) ◽  
pp. 492-506
Author(s):  
S.-Y. Shiau ◽  
R. Joynt ◽  
S.N. Coppersmith

The graph isomorphism problem (GI) plays a central role in the theory of computational complexity and has importance in physics and chemistry as well \cite{kobler93,fortin96}. No polynomial-time algorithm for solving GI is known. We investigate classical and quantum physics-based polynomial-time algorithms for solving the graph isomorphism problem in which the graph structure is reflected in the behavior of a dynamical system. We show that a classical dynamical algorithm proposed by Gudkov and Nussinov \cite{gudkov02} as well as its simplest quantum generalization fail to distinguish pairs of non-isomorphic strongly regular graphs. However, by combining the algorithm of Gudkov and Nussinov with a construction proposed by Rudolph \cite{rudolph02} in which one examines a graph describing the dynamics of two particles on the original graph, we find an algorithm that successfully distinguishes all pairs of non-isomorphic strongly regular graphs that we tested with up to 29 vertices.


2021 ◽  
Vol 9 (1) ◽  
pp. 166-196
Author(s):  
Kamil Brádler ◽  
Shmuel Friedland ◽  
Josh Izaac ◽  
Nathan Killoran ◽  
Daiqin Su

Abstract We introduce a connection between a near-term quantum computing device, specifically a Gaussian boson sampler, and the graph isomorphism problem. We propose a scheme where graphs are encoded into quantum states of light, whose properties are then probed with photon-number-resolving detectors. We prove that the probabilities of different photon-detection events in this setup can be combined to give a complete set of graph invariants. Two graphs are isomorphic if and only if their detection probabilities are equivalent. We present additional ways that the measurement probabilities can be combined or coarse-grained to make experimental tests more amenable. We benchmark these methods with numerical simulations on the Titan supercomputer for several graph families: pairs of isospectral nonisomorphic graphs, isospectral regular graphs, and strongly regular graphs.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


2015 ◽  
Vol 92 (1) ◽  
pp. 482-486
Author(s):  
A. A. Makhnev ◽  
D. V. Paduchikh

2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


Sign in / Sign up

Export Citation Format

Share Document