scholarly journals Synthesis of compact patterns for NMR relaxation decay in intelligent "electronic tongue" for analyzing heavy oil composition

2018 ◽  
Vol 1015 ◽  
pp. 032083
Author(s):  
E M Lapshenkov ◽  
V Y Volkov ◽  
V P Kulagin
2018 ◽  
Vol 37 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Igor P. Kosachev ◽  
Dmitry N. Borisov ◽  
Makhmut R. Yakubov ◽  
Airat I. Shamsullin ◽  
Tagir S. Aynullov

2019 ◽  
Vol 14 (2) ◽  
pp. 101-107
Author(s):  
V.Sh. Shagapov ◽  
E.V. Galiakbarova

To prepare for transportation at the fields, light and heavy oils are mixed with the help of jet mixers, which are injection devices that are installed in the receiving and distributing nozzle inside the tank. The work considers the simplest technological mixing scheme. The basic equations are presented that describe the processes of mixing light and heavy oils in a mixer, in which the light oil stream is the working stream, and the source stream in the heavy oil tank is the injected stream. The characteristic equation of the mixer is obtained. A system of equations is presented that describes the trajectory of the center line of the jet, changes in oil composition and average velocity along the jet. An example of a mixer, which is used in practice in a reservoir of the PBC 2000 type, is considered. Based on the characteristic equation for the known pressure drop of the working and injected flows, as well as the ratio of the sections of the working nozzle and the output section of the mixing chamber, the mixer injection coefficient is found. The calculated graphs of the characteristics of a turbulent flooded jet in an oil field oil storage tank are presented. From the graphs it follows: 1) there is a complete alignment of the concentration of the injected oil mixture with the concentration of heavy oil in the tank; 2) the speed of the jet decreases at a distance of the order of several meters to a value exceeding the minimum fishing speed known from the practice of liquidating bottom sediments. The main role of the mixer when mixing oils is that due to the injection of heavy oil from the reservoir, forced circulation flows are formed that exclude the formation of stagnant zones and the precipitation of solid inactive deposits.


Author(s):  
Qingwen Ni ◽  
Shuo Chen

Dentin and bone are formed when odontoblasts and osteoblasts synthesize and secrete collagen type I-rich extracellular matrix that mineralizes in a highly controlled manner. A wide spectrum of mouse and human disorders affecting tooth and bone biomineralization shows that dentin and bone formation are under strict genetic control. Although the controlling mechanisms of dentinogenesis and osteogenesis require further study, a large body of evidence points to the importance of the matrix metalloproteinases (MMPs) participate in a wide variety of extracellular matrix degradation. Detailed knowledge of MMPs may be important for understanding the pathogenesis of tooth development. Some researchers have pointed MMP-9 is an extracelluar proteinase that is highly expressed in osteoclasts and has been postulated to play an important role in their resorptive activity. Although MMP-9 has been reported to play a role in bone resorption, the association of this enzyme during deciduous tooth resorption has not yet been clarified. Based on accumulating evidence, we hypothesized that MMP-9 should play a role in teeth attrition. In this study, we have applied NMR relaxation technique to assess age-related MMP-9 KO tooth quality in vitro by quantifying changes in dentin and pulp simultaneously. The major hypothesis in this paper was that whether noninvasive NMR relaxation time measurements could be used to characterize MMP-9 KO changes in dentin and pulp, and to predict tooth quality. Specifically, we tested that age-related MMP-9 KO tooth changes result in an alteration of the NMR spin-spin (T2) relaxation time signal due to the structural changes in the tooth matrix. This signal can be further processed to produce a T2 relaxation distribution spectrum related to dentin and pulp, and their derived parameters can be used as descriptors of age-related MMP-9 KO tooth changes. In this study, the proton liquid-like NMR spin-spin (T2) relaxation decay signal was obtained from the Carr-Purcell-Meiboom-Gill (CPMG) NMR spin echo train method [1,2], then the relaxation decay signal was converted to T2 relaxation distribution spectra describing the size domain of dentin and pulp. Therefore, we can calibrate the intensities in NMR inversion T2 relaxation distribution spectra corresponding to the amount of dentin and pulp related to the structural changes. Here, we propose an NMR calibration method “NMR standard estimation” — the ratio of the amount of pulp to the amount of dentin obtained from NMR T2 distribution spectra that can be used to measure the age-related MMP-9 KO structural changes in teeth [3]. We are cognizant of the biological and physiological variability manifest in teeth size variations, but feel that this kind of NMR standard estimation — the ratio of amount of dentin to amount of pulp from the NMR T2 inversion spectrum can be used to determine age-related MMP-9 KO structural changes in teeth and eliminate any variations in size of teeth.


2003 ◽  
Author(s):  
G.-Q. Tang ◽  
T. Leung ◽  
L.M. Castanier ◽  
A. Sahni ◽  
F. Gadelle ◽  
...  

SPE Journal ◽  
2006 ◽  
Vol 11 (02) ◽  
pp. 259-268 ◽  
Author(s):  
Guo-Qing Tang ◽  
Akshay Sahni ◽  
Frederic Gadelle ◽  
Mridul Kumar ◽  
Anthony R. Kovscek

Summary Solution gas drive is effective to recover heavy oil from some reservoirs. Characterization of the relevant recovery mechanisms, however, remains an open question. In this work, we present an experimental study of the solution gas drive behavior of a 9°API crude oil with an initial solution gas/oil ratio (GOR) of 105 scf/STB and live-oil viscosity of 258 cp at 178°F. Constant rate depletions are conducted in a composite core (consolidated) and a sandpack (unconsolidated). The sandpack does not employ a confining pressure, whereas the consolidated core does. The evolution of in-situ gas saturation vs. pressure is monitored in the sandpack using X-ray computed tomography. The two different porous media allow us to develop a mechanistic perspective whereby the effects of depletion rate and overburden pressure on heavy-oil solution gas drive are investigated. The results are striking. They show that the overburden pressure offsets partially the pore-pressure decline. This compaction, in turn, modifies the size and shape of mobile gas bubbles, and as a result the oil and gas relative permeabilies are greater within the confined, consolidated core. Additionally, the supersaturation in the sandpack is markedly larger, but recovery is greatest from the composite core at identical rates as a result of compaction. Introduction Solution gas drive in some heavy-oil reservoirs yields unexpectedly large oil recovery. Remarkably, the reservoir pressure declines more slowly than expected and the produced GOR increases slowly below the equilibrium bubblepoint pressure. Since 1988, when Smith identified the phenomenon (commonly referred to as foamy oil), experimental and theoretical studies have aimed to elucidate gas-flow and oil-production mechanisms. Results indicate that the factors governing the efficiency of heavy-oil solution gas drive are oil viscosity (Tang and Firoozabadi 2003, 2005), depletion rate (Tang et al. 2006; Kumar et al. 2000; Sahni et al. 2004), solution GOR (Tang and Firoozabadi 2003), oil composition (Tang et al. 2006; Bauger et al. 2001), and gas-bubble morphology (Li and Yortsos 1995; Tang et al. 2006). Obviously, these factors are not mutually exclusive. Among them, depletion rate as well as the size and shape of bubbles play a key role in recovery. Additionally, the oil composition is important because it plays a determining role in the flowing gas-bubble size that ultimately determines gas-phase mobility (Tang et al. 2006). Gas bubbles grow as a result of supersaturation (the difference between equilibrium and dynamic pressure) as well as pressure depletion. Gas-bubble nucleation is usually described as progressive or instantaneous (Li and Yortsos 1995; Firoozabadi and Kashchiev 1996), depending on the oil composition and porous medium (Tang et al. 2006; Kumar et al. 2000). Experiments with (El Yousfi et al. 1997; George et al. 2005) and simulation of (Arora and Kovscek 2003) gas nucleation in porous media indicate that the gas phase forms progressively. The period of active bubble nucleation is, however, relatively short compared to the time needed to deplete the sysem. Therefore, the process might be approximated as instantaneous nucleation if the longer time behavior is of interest (El Yousfi et al. 1997).


Sign in / Sign up

Export Citation Format

Share Document