The Effect of Crude Oil Composition on Aqueous Phase-Rock Interaction: Implications on Formation Damage in the Enhanced Recovery of Heavy Oil

Author(s):  
E.J. Manrique ◽  
Marlene Villalba ◽  
Zuleyka Mendez
2021 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Irek I. Mukhamatdinov ◽  
Firdavs A. Aliev ◽  
Dmitriy F. Feoktistov ◽  
Sergey A. Sitnov ◽  
...  

Abstract A nickel-based catalyst precursor has been synthesized for in-situ upgrading of heavy crude oil that is capable of increasing the efficiency of steam stimulation techniques. The precursor activation occurs due to the decomposition of nickel tallate under hydrothermal conditions. The aim of this study is to analyze the efficiency of in-situ catalytic upgrading of heavy oil from laboratory scale experiments to the field-scale implementation in Boca de Jaruco reservoir. The proposed catalytic composition for in-reservoir chemical transformation of heavy oil and natural bitumen is composed of oil-soluble nickel compound and organic hydrogen donor solvent. The nickel-based catalytic composition in laboratory-scale hydrothermal conditions at 300°С and 90 bars demonstrated a high performance; the content of asphaltenes was reduced from 22% to 7 wt.%. The viscosity of crude oil was also reduced by three times. The technology for industrial-scale production of catalyst precursor was designed and the first pilot batch with a mass of 12 ton was achieved. A «Cyclic steam stimulation» technology was modified in order to deliver the catalytic composition to the pay zones of Boca de Jaruco reservoir (Cuba). The active forms of catalyst precursors are nanodispersed mixed oxides and sulfides of nickel. The pilot test of catalyst injection was carried out in bituminous carbonate formation M, in Boca de Jaruco reservoir (Cuba). The application of catalytic composition provided increase in cumulative oil production and incremental oil recovery in contrast to the previous cycle (without catalyst) is 170% up to date (the effect is in progress). After injection of catalysts, more than 200 samples from production well were analyzed in laboratory. Based on the physical and chemical properties of investigated samples and considering the excellent oil recovery coefficient it is decided to expand the industrial application of catalysts in the given reservoir. The project is scheduled on the fourth quarter of 2021.


2017 ◽  
Author(s):  
Jorge Antonio Lopes ◽  
Graciane Silva ◽  
Marcia Marques ◽  
Sérgio Machado Correa

Bioremediation of aged and newly clayey soil contaminated with crude oil was investigated in lab-scale using two different strategies (biostimulation-BIOS and bioaugmentation-BIOA), also simulating two different technological options: dynamic biopile (M) and static biopile with forced aeration (B). The inoculum used for bioaugmentation was obtained from the aged contaminated soil. The treatments were performed in triplicates and included one control (original contaminated soil-CONT). The treatments were monitored with soil sampling obtained after 0, 24, 59 and 121 days when the populations of total heterotrophic microorganism (THM), total fungi (TF), and oil-degrading microorganism (ODM) as well as the extracted total petroleum hydrocarbons (TPH) and the 16 polycyclic aromatic hydrocarbons (PAH) prioritized by U.S. EPA were analyzed by gas chromatography. It was observed a trend for reduction of the microbial population density from 0 to 121 days. As expected, the population densities of THM and ODM were much higher in bio-augmented soils in both technologies (BIOA-m and BIOA-b) at day 0. However, after 121 days, the superiority in THM density was observed only in the bioreactor simulating static biopile with forced aeration (BIOA-b). Regarding treatment efficiency, the static biopile with forced aeration performed better in the removal of TPH when associated with bioaugmentation (BIOA-b), being equivalent to the microcosms (simulating dynamic biopile) for the other treatments (CONT and BIOS). For PAH, the superiority of the bioreactor was less conspicuous but observed in both bioremediation strategies (biostimulation BIOS-b and bioaugmentation BIOA-b). The results suggested that regarding TPH, the strategy of bioaugmentation was superior to biostimulation and that the bioreactor (simulating static biopile with forced aeration) reached better contaminant reductions than the microcosm (simulating dynamic biopile). Clayey soil contaminated with crude oil poses big challenges for the bioremediation, due to the texture of the soil favouring adsorption of organic contaminants and due to the complex crude oil composition. The bioprocesses are slow, cleavage of larger molecules are likely to generate smaller hydrocarbons and therefore the elimination of the toxicity is very slow, which may require longer periods and auxiliary tools, such as surfactants.


Sign in / Sign up

Export Citation Format

Share Document