scholarly journals Shock wave structure in rarefied polyatomic gases with large relaxation time for the dynamic pressure

2018 ◽  
Vol 1035 ◽  
pp. 012009 ◽  
Author(s):  
Shigeru Taniguchi ◽  
Takashi Arima ◽  
Tommaso Ruggeri ◽  
Masaru Sugiyama
2014 ◽  
Vol 26 (1) ◽  
pp. 016103 ◽  
Author(s):  
Shigeru Taniguchi ◽  
Takashi Arima ◽  
Tommaso Ruggeri ◽  
Masaru Sugiyama

2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


1967 ◽  
Vol 72 (21) ◽  
pp. 5275-5286 ◽  
Author(s):  
G. Schubert ◽  
W. D. Cummings

1976 ◽  
Vol 10 (1) ◽  
pp. 237-240 ◽  
Author(s):  
Rolf Landauer

Sign in / Sign up

Export Citation Format

Share Document