equilibrium temperature
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 123)

H-INDEX

30
(FIVE YEARS 7)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Chenghu Zhang ◽  
Dezhi Zou ◽  
Xinpeng Huang ◽  
Weijun Lu

To reduce operating costs on the basis of ensuring the desulfurization efficiency in a wet flue gas desulfurization system, a theoretical model was put forward, and a calculation method was set up. Correlations between reaction zone height, flue gas inlet temperature, slurry inlet temperature, gas–liquid ratio and desulfurization efficiency were found. Based on the heat and mass transfer model of the spray tower, the integrated system of desulfurization tower and open slurry pool and the flue gas desulfurization-waste heat recovery system were established. Additionally, the effect of outdoor wind speed, heat dissipation area and ambient temperature on the slurry equilibrium temperature in the integrated system were analyzed. The results show the slurry equilibrium temperature of the desulfurization system is negatively correlated with outdoor wind speed and heat dissipation area, and positively related to ambient temperature. The slurry temperature is the main factor that affects the performance of the wet flue gas desulfurization system. Finally, based on the Harbin heating group Hua Hui hotspot energy-saving reconstruction project, a case analysis was conducted, which proves the flue gas desulfurization-waste heat recovery system is profitable, energy saving and a suitable investment project.


Author(s):  
Changhong Yu ◽  
Baojiang Sun ◽  
Tangyang Yang ◽  
zhiyuan wang ◽  
Yonghai Gao ◽  
...  

The dissociation conditions of hydrate in clayey silts are of great significance for its efficient production. In this work, the dissociation conditions of methane hydrate in clayey silt cores were experimentally measured by step-heating method. Various cores including quartz powder, montmorillonite and South China Sea sediments were used for investigation. The results showed that the dissociation temperatures of methane hydrate in clayey silt cores depressed compared to bulk hydrate. In comparison to grain size, salinity and lithology had a more significant influence on the equilibrium temperature depression. A water activity meter was used to measure the water activity in clayey silt cores. The influence of salt and minerals on water activity was investigated. By combining the measured water activity data with the Chen-Guo model, a novel water activity measurement method (WAM) for the hydrate dissociation conditions prediction was proposed. The predicted results are in good agreement with the experimental data.


2021 ◽  
Vol 162 (6) ◽  
pp. 287
Author(s):  
Lia Corrales ◽  
Sasikrishna Ravi ◽  
George W. King ◽  
Erin May ◽  
Emily Rauscher ◽  
...  

Abstract Short-wavelength exoplanet transit measurements have been used to probe mass loss in exoplanet atmospheres. We present the Swift-UVOT transit light curves for five hot Jupiters orbiting UV-bright F-type stars: XO-3, KELT-3, WASP-3, WASP-62, and HAT-P-6. We report one positive transit detection of XO-3b and one marginal detection of KELT-3b. We place upper limits on the remaining three transit depths. The planetary radii derived from the NUV transit depths of both potential detections are 50%–100% larger than their optical radius measurements. We examine the ratio R NUV/R opt for trends as a function of estimated mass-loss rate, which we derive from X-ray luminosity obtained from the Swift-XRT or, in the case of WASP-62, XMM-Newton. We find no correlation between the energy-limited photoevaporative mass-loss rate and the R NUV/R opt ratio. We also search for trends based on the equilibrium temperature of the hot Jupiters. We find a possible indication of a transition in the R NUV/R opt ratio around T eq = 1700 K, analogous to the trends found for NIR water features in transmission spectra. This might be explained by the formation of extended cloud decks with silicate particles ≤1 μm. We demonstrate that the Swift-UVOT filters could be sensitive to absorption from aerosols in exoplanet atmospheres.


2021 ◽  
Vol 923 (2) ◽  
pp. 247
Author(s):  
Li Zeng ◽  
Stein B. Jacobsen ◽  
Eugenia Hyung ◽  
Amit Levi ◽  
Chantanelle Nava ◽  
...  

Abstract Recent astronomical observations obtained with the Kepler and TESS missions and their related ground-based follow-ups revealed an abundance of exoplanets with a size intermediate between Earth and Neptune (1 R ⊕ ≤ R ≤ 4 R ⊕). A low occurrence rate of planets has been identified at around twice the size of Earth (2 × R ⊕), known as the exoplanet radius gap or radius valley. We explore the geometry of this gap in the mass–radius diagram, with the help of a Mathematica plotting tool developed with the capability of manipulating exoplanet data in multidimensional parameter space, and with the help of visualized water equations of state in the temperature–density (T–ρ) graph and the entropy–pressure (s–P) graph. We show that the radius valley can be explained by a compositional difference between smaller, predominantly rocky planets (<2 × R ⊕) and larger planets (>2 × R ⊕) that exhibit greater compositional diversity including cosmic ices (water, ammonia, methane, etc.) and gaseous envelopes. In particular, among the larger planets (>2 × R ⊕), when viewed from the perspective of planet equilibrium temperature (T eq), the hot ones (T eq ≳ 900 K) are consistent with ice-dominated composition without significant gaseous envelopes, while the cold ones (T eq ≲ 900 K) have more diverse compositions, including various amounts of gaseous envelopes.


2021 ◽  
Vol 923 (2) ◽  
pp. 242
Author(s):  
Jayesh M. Goyal ◽  
Nikole K. Lewis ◽  
Hannah R. Wakeford ◽  
Ryan J. MacDonald ◽  
Nathan J. Mayne

Abstract Thermal emission has now been observed from dozens of exoplanet atmospheres, opening the gateway to population-level characterization. Here, we provide theoretical explanations for observed trends in Spitzer IRAC channel 1 (3.6 μm) and channel 2 (4.5 μm) photometric eclipse depths (EDs) across a population of 34 hot Jupiters. We apply planet-specific, self-consistent atmospheric models, spanning a range of recirculation factors, metallicities, and C/O ratios, to probe the information content of Spitzer secondary eclipse observations across the hot-Jupiter population. We show that most hot Jupiters are inconsistent with blackbodies from Spitzer observations alone. We demonstrate that the majority of hot Jupiters are consistent with low-energy redistribution between the dayside and nightside (hotter dayside than expected with efficient recirculation). We also see that high-equilibrium temperature planets (T eq ≥ 1800 K) favor inefficient recirculation in comparison to the low temperature planets. Our planet-specific models do not reveal any definitive population trends in metallicity and C/O ratio with current data precision, but more than 59% of our sample size is consistent with the C/O ratio ≤ 1 and 35% are consistent with whole range (0.35 ≤ C/O ≤ 1.5). We also find that for most of the planets in our sample, 3.6 and 4.5 μm model EDs lie within ±1σ of the observed EDs. Intriguingly, few hot Jupiters exhibit greater thermal emission than predicted by the hottest atmospheric models (lowest recirculation) in our grid. Future spectroscopic observations of thermal emission from hot Jupiters with the James Webb Space Telescope will be necessary to robustly identify population trends in chemical compositions with its increased spectral resolution, range, and data precision.


2021 ◽  
Vol 162 (6) ◽  
pp. 292
Author(s):  
Brett C. Addison ◽  
Emil Knudstrup ◽  
Ian Wong ◽  
Guillaume Hébrard ◽  
Patrick Dorval ◽  
...  

Abstract We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA-5 b (HD 201033b), first detected by NASA’s Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 ± 1.1 m s−1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of M p = 3.12 ± 0.18 M J (990 ± 60 M ⊕), an inflated radius of R p = 1.49 ± 0.05 R J (16.7 ± 0.6 R ⊕), and an orbital period of P = 2.650237 ± 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ( 0.29 − 0.19 + 0.32 Gyr) Am type star with T eff = 7690 − 250 + 400 K, resulting in a highly irradiated planet with an incident flux of 〈 F 〉 = 7.24 − 0.64 + 0.68 × 109 erg s−1 cm−2 ( 5300 − 470 + 500 S ⊕ ) and an equilibrium temperature of T eq = 2370 ± 70 K. TESS photometry also reveals a secondary eclipse with a depth of 127 − 5 + 4 ppm as well as the full phase curve of the planet’s thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as T day = 3004 ± 64 K and T night = 2583 ± 63 K, the second hottest measured nightside temperature. The planet’s low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey.


2021 ◽  
Vol 922 (2) ◽  
pp. 126
Author(s):  
Olli Sipilä ◽  
Kedron Silsbee ◽  
Paola Caselli

Abstract Nonthermal desorption of ices on interstellar grains is required to explain observations of molecules that are not synthesized efficiently in the gas phase in cold dense clouds. Perhaps the most important nonthermal desorption mechanism is one induced by cosmic rays (CRs), which, when passing through a grain, heat it transiently to a high temperature—the grain cools back to its original equilibrium temperature via the (partial) sublimation of the ice. Current cosmic ray induced desorption (CRD) models assume a fixed grain cooling time. In this work, we present a revised description of CRD in which the desorption efficiency depends dynamically on the ice content. We apply the revised desorption scheme to two-phase and three-phase chemical models in physical conditions corresponding to starless and prestellar cores, and to molecular cloud envelopes. We find that, inside starless and prestellar cores, introducing dynamic CRD can decrease gas-phase abundances by up to an order of magnitude in two-phase chemical models. In three-phase chemical models, our model produces results very similar to those of the static cooling scheme—when only one monolayer of ice is considered active. Ice abundances are generally insensitive to variations in the grain cooling time. Further improved CRD models need to take into account additional effects in the transient heating of the grains—introduced, for example, by the adoption of a spectrum of CR energies.


2021 ◽  
Author(s):  
Kenta Yoshida ◽  
Yoshihiko Tamura ◽  
Tomoki Sato ◽  
Takeshi Hanyu ◽  
Yoichi Usui ◽  
...  

Pumice rafts that arrived at the Nansei Islands, Japan, provided a unique opportunity to investigate the Fukutoku-Oka-no-Ba (FOB) eruption of August 2021. Despite drifting for two months for >1300 km, the drift pumice raft had a large volume and contained a variety of pumice clasts, some of which were deposited during a high tide in a typhoon, while others were washed up on a sandy beach. Most of the drift pumice clasts are gray in color, vesicular, and have a groundmass containing black enclaves, which are similar to those collected in the ocean near FOB about one week after the eruption. Rare black pumice and the main gray pumice components have similar trachytic compositions, with SiO2 = 61–62 mass% and total alkalis = 8.6–10 mass% (on an anhydrous basis). Both pumice types contain clinopyroxene, plagioclase, and rare olivine phenocrysts. Thin-section observations show that the gray pumice has more elongated vesicles as compared with the black pumice that has spherical vesicles, even where the two types of pumice are in the same clast. The glass in the black pumice is transparent and brown in color, while that in the gray pumice is colorless. No micro or nano-crystals were observed during electron and optical microscopy in the brown domain. Raman spectra of the brown-colored glass exhibit a clear magnetite peak, suggesting magnetite nanolites cause the brown color. High-Mg (100 × Mg/[Mg+Fe] = 92) olivine in the black pumice has an equilibrium temperature of 1240 °C and a rim diffusion profile indicative of re-equilibration with the surrounding melt over a period of hours to days.The textural relationships between the gray and black pumice suggest that the black pumice had become black and viscous before the two types of pumice mixed. Therefore, crystallization of magnetite nanolites and a corresponding increase in melt viscosity were important in the eruption preparation process, which then resulted in a large-scale Plinian eruption.


2021 ◽  
pp. 1-53
Author(s):  
Marianna Linz ◽  
Gang Chen

Abstract The non-normality of temperature probability distributions and the physics that drive it are important due to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to explore how horizontal temperature advection and other physical processes work together to control the shape of daily temperature distributions during 1979-2019 in the ERA5 reanalysis for both JJA and DJF. We demonstrate that the temperature distribution in mid- and high- latitudes can largely be linearly explained by the conditional mean horizontal temperature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially-variant relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While this simple method works well over most of the ocean, the advection-temperature relationship is more complicated over land. We classify land regions with different advection-temperature relationships under our framework, and find that for both seasons the aforementioned linear relationship can explain ~30% of land area, and can explain either the lower or the upper half of temperature distributions in an additional ~30% of land area. Identifying the regions where temperature advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future change of temperature distributions and extreme events.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022023
Author(s):  
G V Mikheeva ◽  
A V Pashin

Abstract A numerical study of heat transfer between an electron gas and a crystal lattice in a metal nanofilm under irradiation with an ultrashort laser pulse was carried out on the basis of a parabolic two-temperature model of thermal conductivity presented in a dimensionless form. For the numerical solution, the finite difference method was used using the explicit-implicit Crank-Nicholson scheme. As a result of the numerical study, it was found that with an increase in the thickness of the plate, the equilibrium temperature decreases, and the time for the onset of thermal equilibrium between the electrons and the crystal lattice increases.


Sign in / Sign up

Export Citation Format

Share Document