polyatomic gases
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 30)

H-INDEX

35
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Sebastiano Pennisi ◽  
Rita Enoh Tchame ◽  
Marcel Obounou

Maxwell’s equations in materials are studied jointly with Euler equations using new knowledge recently appeared in the literature for polyatomic gases. For this purpose, a supplementary conservation law is imposed; one of the results is a restriction on the law linking the magnetic field in empty space and the electric field in materials to the densities of the 4-Lorentz force να and its dual μα: These are the derivatives of a scalar function with respect to να and μα, respectively. Obviously, two of Maxwell’s equations are not evolutive (Gauss’s magnetic and electric laws); to simplify this mathematical problem, a new symmetric hyperbolic set of equations is here presented which uses unconstrained variables and the solutions of the new set of equations, with initial conditions satisfying the constraints, restore the previous constrained set. This is also useful because it allows to maintain an overt covariance that would be lost if the constraints were considered from the beginning. This is also useful because in this way the whole set of equations becomes a symmetric hyperbolic system as usually in Extended Thermodynamics.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 43
Author(s):  
Takashi Arima ◽  
Maria Cristina Carrisi ◽  
Sebastiano Pennisi ◽  
Tommaso Ruggeri

A relativistic version of the rational extended thermodynamics of polyatomic gases based on a new hierarchy of moments that takes into account the total energy composed by the rest energy and the energy of the molecular internal mode is proposed. The moment equations associated with the Boltzmann–Chernikov equation are derived, and the system for the first 15 equations is closed by the procedure of the maximum entropy principle and by using an appropriate BGK model for the collisional term. The entropy principle with a convex entropy density is proved in a neighborhood of equilibrium state, and, as a consequence, the system is symmetric hyperbolic and the Cauchy problem is well-posed. The ultra-relativistic and classical limits are also studied. The theories with 14 and 6 moments are deduced as principal subsystems. Particularly interesting is the subsystem with 6 fields in which the dissipation is only due to the dynamical pressure. This simplified model can be very useful when bulk viscosity is dominant and might be important in cosmological problems. Using the Maxwellian iteration, we obtain the parabolic limit, and the heat conductivity, shear viscosity, and bulk viscosity are deduced and plotted.


2021 ◽  
Vol 2 (3) ◽  
pp. 187-201
Author(s):  
Sebastiano Pennisi

In a recent article an infinite set of balance equations has been proposed to modelize polyatomic gases with rotational and vibrational modes in the non-relativistic context. To obtain particular cases, it has been truncated to obtain a model with 7 or 15 moments. Here the following objectives are pursued: 1) to obtain the relativistic counterpart of this model which, at the non-relativistic limit, gives the same balance equations as in the known classical case; 2) to obtain the previous result for the model with an arbitrary but fixed number of moments, 3) to obtain the closure of the resulting relativistic model so that all the functions appearing in the balance equations are expressed in terms of the independent variables. To achieve these goals, the following methods are used: 1) The Entropy Principle is imposed. As a result is obtained that the closure is determined up to a single 4-vectorial function usually called 4-potential. 2) To determine this last function, a more restrictive principle is imposed, namely the Maximum Entropy Principle (MEP). 3) Since all the functions involved must be expressed in the covariant form, so as not to depend on the observer, the Representation Theorems are used. Findings of this article are exactly the goals outlined earlier. They are clearly novelty because they had never been achieved before. They can be considered also improvements because, if the aforementioned arbitrary number of moments is restricted to 16, the present work coincide with that already known in literature. Doi: 10.28991/HIJ-2021-02-03-04 Full Text: PDF


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Vladimir Djordjić ◽  
Milana Pavić-Čolić ◽  
Manuel Torrilhon

One of the main successes of the kinetic theory of gases is the explicit calculation of the transport coefficients of rarefied gases. However, the greatest problems arise when calculating the thermal conductivity coefficient, especially for polyatomic gases. Also, when using different potentials, it is necessary to systematically calculate the so-called Ω-integrals, which in itself is a rather difficult task. For this reason, direct numerical molecular modeling of the processes of transfer of rarefied gases, in particular, the calculation of their transfer coefficients, is also relevant. A well-known method for such modeling is the molecular dynamics method. Unfortunately, until now this method is not available for modeling the processes of rarefied gas transfer. Under nor-mal conditions, the simulation cell should contain tens or even hundreds of millions of molecules during calculations. At the same time, the numerical implementation of the molecular dynamics method is accompanied by a systematic appearance of errors, which is the reason for the appearance of dynamic chaos. With this simulation, the true phase trajectories of the system under consideration cannot be obtained. Therefore, naturally, the idea of developing a method for modeling transport processes arises, in which phase trajectories are not calculated based on Newton's laws, but are simulated, and then are used to calculate any observables. In our works, we developed a method of stochastic molecular modeling (STM) of rarefied gas transfer processes, where this idea was implemented. The efficiency of the SMM method was demonstrated by calculating the coefficients of self-diffusion, diffusion, and viscosity of both monoatomic gases and polyatomic gases. At the same time, the possibility of modeling the most complex transfer process – the energy transfer process – has not yet been considered. This work aims to simulate the thermal conductivity coefficient by the SMM method. Both monoatomic (Ar, Kr, Ne, Xe) and polyatomic gases (CH4, O2) were considered.


Sign in / Sign up

Export Citation Format

Share Document