scholarly journals Perspective ceramic composite materials based on aluminum-yttrium binder composition

2018 ◽  
Vol 1121 ◽  
pp. 012032
Author(s):  
M S Varfolomeev ◽  
V S Moiseev ◽  
G I Shcherbakova
2019 ◽  
Vol 118 (4) ◽  
pp. 159-168 ◽  
Author(s):  
Alejandro Carrasco-Pena ◽  
Ryan Jordan ◽  
Jessica Dieguez ◽  
Arturo Coronado-Rodríguez ◽  
Veli B. Ozdemir ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 370 ◽  
Author(s):  
Bogdan Stefan Vasile ◽  
Alexandra Catalina Birca ◽  
Vasile Adrian Surdu ◽  
Ionela Andreea Neacsu ◽  
Adrian Ionut Nicoară

This paper is focused on the basic properties of ceramic composite materials used as thermal barrier coatings in the aerospace industry like SiC, ZrC, ZrB2 etc., and summarizes some principal properties for thermal barrier coatings. Although the aerospace industry is mainly based on metallic materials, a more attractive approach is represented by ceramic materials that are often more resistant to corrosion, oxidation and wear having at the same time suitable thermal properties. It is known that the space environment presents extreme conditions that challenge aerospace scientists, but simultaneously, presents opportunities to produce materials that behave almost ideally in this environment. Used even today, metal-matrix composites (MMCs) have been developed since the beginning of the space era due to their high specific stiffness and low thermal expansion coefficient. These types of composites possess properties such as high-temperature resistance and high strength, and those potential benefits led to the use of MMCs for supreme space system requirements in the late 1980s. Electron beam physical vapor deposition (EB-PVD) is the technology that helps to obtain the composite materials that ultimately have optimal properties for the space environment, and ceramics that broadly meet the requirements for the space industry can be silicon carbide that has been developed as a standard material very quickly, possessing many advantages. One of the most promising ceramics for ultrahigh temperature applications could be zirconium carbide (ZrC) because of its remarkable properties and the competence to form unwilling oxide scales at high temperatures, but at the same time it is known that no material can have all the ideal properties. Another promising material in coating for components used for ultra-high temperature applications as thermal protection systems is zirconium diboride (ZrB2), due to its high melting point, high thermal conductivities, and relatively low density. Some composite ceramic materials like carbon–carbon fiber reinforced SiC, SiC-SiC, ZrC-SiC, ZrB2-SiC, etc., possessing low thermal conductivities have been used as thermal barrier coating (TBC) materials to increase turbine inlet temperatures since the 1960s. With increasing engine efficiency, they can reduce metal surface temperatures and prolong the lifetime of the hot sections of aero-engines and land-based turbines.


Ionics ◽  
2013 ◽  
Vol 19 (12) ◽  
pp. 1751-1760 ◽  
Author(s):  
A. Rajani Malathi ◽  
Ch. Sameera Devi ◽  
G. S. Kumar ◽  
M. Vithal ◽  
G. Prasad

2008 ◽  
Vol 59 ◽  
pp. 87-91 ◽  
Author(s):  
K. Mergia ◽  
Volker Liedtke ◽  
T. Speliotis ◽  
G. Apostolopoulos ◽  
S. Messoloras

The use of ceramic composite materials in aerospace applications requires the development of oxidization protection coatings which can withstand very high temperatures. HfO2 is a promising material as a high temperature oxidization protective layer. HfO2 coatings have been deposited by radiation frequency magnetron sputtering all over the surface of SiC substrates and were tested under re-entry conditions. Also their oxidization resistance in air in the temperature range 1100 to 1450°C has been examined. The coatings were found to be stable and well-adhering to the substrate even after 100 re-entry cycles. No oxidization of the underlying SiC structure is observed. Re-entry and oxidization tests result in the formation of HfSiO4 at the HfO2/SiC interface, which further promotes their oxidization resistance.


Sign in / Sign up

Export Citation Format

Share Document