scholarly journals Thermo-Mechanical Behaviour of HfO2 Coatings for Aerospace Applications

2008 ◽  
Vol 59 ◽  
pp. 87-91 ◽  
Author(s):  
K. Mergia ◽  
Volker Liedtke ◽  
T. Speliotis ◽  
G. Apostolopoulos ◽  
S. Messoloras

The use of ceramic composite materials in aerospace applications requires the development of oxidization protection coatings which can withstand very high temperatures. HfO2 is a promising material as a high temperature oxidization protective layer. HfO2 coatings have been deposited by radiation frequency magnetron sputtering all over the surface of SiC substrates and were tested under re-entry conditions. Also their oxidization resistance in air in the temperature range 1100 to 1450°C has been examined. The coatings were found to be stable and well-adhering to the substrate even after 100 re-entry cycles. No oxidization of the underlying SiC structure is observed. Re-entry and oxidization tests result in the formation of HfSiO4 at the HfO2/SiC interface, which further promotes their oxidization resistance.

Author(s):  
Yu. A. Balinova ◽  
D. V. Graschenkov ◽  
A. A. Shavnev ◽  
V. G. Babashov ◽  
A. S. Chaynikova ◽  
...  

This paper describes achievements of the All-Russian Scientific Research Institute of Aviation Materials in the field of creating high-temperature heat-shielding, ceramic and metal-ceramic composite materials. The advantages and prospects of applying the developed materials in the manufacturing of structural elements of aircraft and friction joints are discussed. The synthesis features and basic properties of metal-ceramic composite materials based on light alloys, refractory metal matrices, ceramic composite materials for use in heavily loaded structural elements of modern aircraft are presented. The main achievements in the field of heat-shielding materials based on refractory oxide fibres are presented, along with their properties and application in new-generation aircrafts.


Author(s):  
Ken Reifsnider ◽  
S. W. Case

Monolithic ceramics and continuous fiber reinforced ceramic composites are being developed for use in high temperature applications such as combustor liners in gas turbines, thrust deflectors for jet engines, and thruster nozzles. Ceramic composite materials possess the high temperature resistance properties of ceramics, but have better creep and cyclic properties. However, the properties of these materials change somewhat with time at service temperatures, i.e., their material state changes as a function of service conditions and history. The authors have developed a methodology for representing and combining the effects of high temperature material state changes in CMCs, along with changes in applied stress / strain conditions during service, to estimate remaining strength and life of ceramic composite materials and components. Fatigue, creep rupture, and time dependent deformation are combined by a strength metric in integral form to create a time-resolved, point-wise estimate of current remaining strength and life in material elements. Application of this methodology in discrete element representations of mechanical behavior of structural elements with nonuniform stress / strain states has been implemented.


2011 ◽  
Vol 81 (5) ◽  
pp. 986-991 ◽  
Author(s):  
E. N. Kablov ◽  
D. V. Grashchenkov ◽  
N. V. Isaeva ◽  
S. St. Solntsev

Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


2019 ◽  
Vol 118 (4) ◽  
pp. 159-168 ◽  
Author(s):  
Alejandro Carrasco-Pena ◽  
Ryan Jordan ◽  
Jessica Dieguez ◽  
Arturo Coronado-Rodríguez ◽  
Veli B. Ozdemir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document