scholarly journals Three-Dimensional Unsteady Wake Characteristics of Rectangular Cylinder

2019 ◽  
Vol 1240 ◽  
pp. 012060
Author(s):  
Prashant Kumar ◽  
Shaligram Tiwari
Author(s):  
Y Wu ◽  
X Zhu ◽  
Z Du

A developed plate stator model with and without trailing edge blowing (TEB) is studied using experimental methods. Wake characteristics of flow over the stator in the three-dimensional wake regimes are studied using hot-wire anemometry (HWA) and particle image velocimetry (PIV) techniques. First, the mean velocity profiles have been measured in the wake of the stator using HWA. Four wake characteristics have been obtained through momentum thickness judgments: pure wake, weak wake, momentumless wake, and jet. These velocity profiles show some differences in momentum deficit for the four cases. Then, the velocity spectra of the pure wake and momentumless wake obtained through the HWA measurements showed that TEB can eliminate the shedding vortex of the stator. Characteristic length scales based on the wake turbulent intensity profiles showed that the momentumless wake can reduce the wake width and depth. PIV measurement is carried out to measure the flow field of the four wakes. Finally, the application of TEB approaching momentumless wake status is used on an industrial ventilation low-pressure axial fan to assess noise reduction. The results show that TEB can make the outlet of the stator uniform, reduce velocity fluctuation, destroy the vorticity structure downstream of the stator, and reduce interaction noise level of the stator and rotor.


2012 ◽  
Vol 25 (4) ◽  
pp. 547-558 ◽  
Author(s):  
Saurav Kumar Ghosh ◽  
Chandrala Lakshmana Dora ◽  
Debopam Das

2020 ◽  
Vol 8 (12) ◽  
pp. 975
Author(s):  
Cong Sun ◽  
Chunyu Guo ◽  
Chao Wang ◽  
Lianzhou Wang ◽  
Jianfeng Lin

The interactions between the main hull and demi-hull of trimarans have been arousing increasing attention, and detailed circumferential flow fields greatly influence trimaran research. In this research, the unsteady wake flow field of a trimaran was obtained by Reynolds-Averaged Navier-Stokes (RANS) equations on the basis of the viscous flow principles with consideration of the heaving and pitching of the trimaran. Then, we designed an experimental method based on particle-image velocimetry (PIV) and obtained a detailed flow field between the main hull and demi-hull of the trimaran. A trimaran model with one demi-hull made of polycarbonate material with 90% light transmission rate and a refractive index 1.58 (close to that of water 1.33) was manufactured as the experiment sample. Using polycarbonate material, the laser-sheet light-source transmission and high-speed camera recording problems were effectively rectified. Moreover, a nonstandard calibration was added into the PIV flow field measurement system. Then, we established an inverse three-dimensional (3D) distortion coordinate system and obtained the corresponding coordinates by using optics calculations. Further, the PIV system spatial mapping was corrected, and the real flow field was obtained. The simulation results were highly consistent with the experimental data, which showed the methods established in this study provided a strong reference for obtaining the detailed flow field information between the main hull and demi-hull of trimarans.


2019 ◽  
Vol 31 (2) ◽  
pp. 025113 ◽  
Author(s):  
Giancarlo Pavia ◽  
Max Varney ◽  
Martin Passmore ◽  
Mathew Almond

2019 ◽  
Vol 93 ◽  
pp. 60-69 ◽  
Author(s):  
Hirofumi Shimojo ◽  
Tomohiro Gonjo ◽  
Jun Sakakibara ◽  
Yasuo Sengoku ◽  
Ross Sanders ◽  
...  

2016 ◽  
Vol 790 ◽  
pp. 453-491 ◽  
Author(s):  
Aswin Gnanaskandan ◽  
Krishnan Mahesh

A homogeneous mixture model is used to study cavitation over a circular cylinder at two different Reynolds numbers ($Re=200$ and 3900) and four different cavitation numbers (${\it\sigma}=2.0$, 1.0, 0.7 and 0.5). It is observed that the simulated cases fall into two different cavitation regimes: cyclic and transitional. Cavitation is seen to significantly influence the evolution of pressure, boundary layer and loads on the cylinder surface. The cavitated shear layer rolls up into vortices, which are then shed from the cylinder, similar to a single-phase flow. However, the Strouhal number corresponding to vortex shedding decreases as the flow cavitates, and vorticity dilatation is found to play an important role in this reduction. At lower cavitation numbers, the entire vapour cavity detaches from the cylinder, leaving the wake cavitation-free for a small period of time. This low-frequency cavity detachment is found to occur due to a propagating condensation front and is discussed in detail. The effect of initial void fraction is assessed. The speed of sound in the free stream is altered as a result and the associated changes in the wake characteristics are discussed in detail. Finally, a large-eddy simulation of cavitating flow at $Re=3900$ and ${\it\sigma}=1.0$ is studied and a higher mean cavity length is obtained when compared to the cavitating flow at $Re=200$ and ${\it\sigma}=1.0$. The wake characteristics are compared to the single-phase results at the same Reynolds number and it is observed that cavitation suppresses turbulence in the near wake and delays three-dimensional breakdown of the vortices.


Sign in / Sign up

Export Citation Format

Share Document