scholarly journals Research and Implementation of Channel Estimation Algorithm Based on Wideband Micro-power System

2019 ◽  
Vol 1325 ◽  
pp. 012151
Author(s):  
Haolin Wang ◽  
Shaohua Liu
2014 ◽  
Vol 35 (3) ◽  
pp. 665-670 ◽  
Author(s):  
Zhi-bin Xie ◽  
Tong-si Xue ◽  
Yu-bo Tian ◽  
Wei-chen Zou ◽  
Qing-hua Liu ◽  
...  

2021 ◽  
Vol 145 ◽  
pp. 111150 ◽  
Author(s):  
Tao Cai ◽  
Dan Zhao ◽  
Yuze Sun ◽  
Siliang Ni ◽  
Weixuan Li ◽  
...  

Optik ◽  
2013 ◽  
Vol 124 (23) ◽  
pp. 5937-5940 ◽  
Author(s):  
S. Zhang ◽  
C.L. Bai ◽  
Q.L. Luo ◽  
L. Huang ◽  
F.F. He

2001 ◽  
Author(s):  
K. Bruce ◽  
R. Richards ◽  
D. Bahr ◽  
C. Richards

Abstract Work toward the development of a thin-film piezoelectric membrane generator is presented. The membrane generator is the central component of a new MEMS power generation system, the P3 micro power system. The P3 micro power system is based on a two-dimensional, modular architecture, in which the individual generic modules or unit cells each have all the functions of an engine integrated. Each unit cell is an external combustion engine, in which thermal power is converted to mechanical power through the use of a novel thermodynamic cycle that approaches the ideal vapor Carnot cycle. Mechanical power is converted into electrical power through the use of a thin-film piezoelectric membrane generator. This paper introduces the concept of the thin-film piezoelectric membrane generator, and describes its design and fabrication. Results of a study to characterize the performance of the piezoelectric membrane generator under expected operating conditions are presented. Current prototypes of the membrane generator are shown to be capable of producing a peak power of 0.1 milliWatts at a voltage of 0.5 Volts.


Sign in / Sign up

Export Citation Format

Share Document