scholarly journals The dynamic programming algorithm for management of real-time aircraft assignments

2019 ◽  
Vol 1333 ◽  
pp. 032040
Author(s):  
Yu L Korotkova ◽  
Yu A Mezentsev
2012 ◽  
Vol 433-440 ◽  
pp. 5911-5917
Author(s):  
Su Xiao Wang ◽  
Yong Sheng Yang ◽  
Zhong Liang Jing

The purpose of flight path planning is to find the optimal path from the real-time and conflict-free airspace to meet the targets, according to one or several performance index. Effective avoiding the no-fly zones, such as the areas of martial movement and the areas of rain and thunderstorm, has great significance to the current flight management system (FMS) that is real-time and effective implementation of the flight plan. The dynamic optimization method of level route based on DP (Dynamic Programming) algorithm without no-fly zone constraints is discussed. Quick and effective to find out an optimal path from the waypoints of arbitrary selection and input can be realized. On this basis, the situation of adding no-fly zone constraints is focused on. In order to ensure that the aircraft is able to effectively avoid no-fly zone constraints in actual flight, Gauss Kruger projection method to convert geographic coordinates to plane coordinates is adopted. Simulation results show that the method used can not only effectively avoid no-fly zone constraints, and the path passed is still optimal.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Kyle Williams ◽  
Monika Ivantysynova

This paper develops a new computational approach for energy management in a hydraulic hybrid vehicle. The developed algorithm, called approximate stochastic differential dynamic programming (ASDDP) is a variant of the classic differential dynamic programming algorithm. The simulation results are discussed for two Environmental Protection Agency drive cycles and one real world cycle based on collected data. Flexibility of the ASDDP algorithm is demonstrated as real-time driver behavior learning, and forecasted road grade information are incorporated into the control setup. Real-time potential of ASDDP is evaluated in a hardware-in-the-loop (HIL) experimental setup.


Sign in / Sign up

Export Citation Format

Share Document