haplotype block
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 28)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Ana Djordjevic ◽  
Maja Zivkovic ◽  
Igor Koncar ◽  
Aleksandra Stankovic ◽  
Jovana Kuveljic ◽  
...  

2021 ◽  
Author(s):  
Xing Wu ◽  
Wei Jiang ◽  
Christopher Fragoso ◽  
Jing Huang ◽  
Geyu Zhou ◽  
...  

Genome wide association studies (GWAS) can play an essential role in understanding genetic basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) used in many GWAS that marginally test single nucleotide polymorphisms (SNPs) have successfully identified many loci with major and minor effects. In plants, the relatively small population size in GWAS and the high genetic diversity found many plant species can impede mapping efforts on complex traits. Here we present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype clusters within each block, and then performs genome-wide haplotype fine-mapping to infer the causal haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, and GMMAT in both simulation and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the other GWAS methods in simulations with high polygenicity. Moreover, it resulted in higher mapping resolution, especially in regions of high LD, by identifying small causal blocks in the larger haplotype block. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to GEMMA results, and its average mapping interval of HapFM was 9.6 times smaller than that of GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex traits and improved mapping resolution to facilitate crop improvement.


2021 ◽  
Author(s):  
Claire Oget-Ebrad ◽  
Naveen Kumar Kadri ◽  
Gabriel Costa Monteiro Moreira ◽  
Latifa Karim ◽  
Wouter Coppieters ◽  
...  

Background: Accurate haplotype reconstruction is required in many applications in quantitative and population genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-based phasing methods. This data represents a typical example of a livestock population, with low effective population size, high levels of relatedness and long-range linkage disequilibrium. Results: After stringent filtering of our sequence data, we evaluated several population-based phasing programs including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individuals having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation rules were considered the gold standard to assess the performance of population-based methods in two scenarios. In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and pairwise SNP phasing accuracies (the probability that a pair of SNPs is correctly phased as a function of their distance). For most evaluated metrics or scenarios, the best software was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb in the second scenario. These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds to only one switch error every 40,000 phased informative markers. When more relatives were included in the data, FImpute3.0 reconstructed extremely long segments without errors. Conclusions: We report extremely high phasing accuracies in a typical livestock sample of 100 sequenced individuals. ShapeIT4.1 and Beagle5.2 proved to be the most accurate, particularly for phasing long segments. Nevertheless, most tools achieved high accuracy at short distances and would be suitable for applications requiring only local haplotypes.


2021 ◽  
Author(s):  
Raz Avni ◽  
Thomas Lux ◽  
Anna Minz-Dub ◽  
Eitan Millet ◽  
Hanan Sela ◽  
...  

Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Ae. longissima and Ae. speltoides. Whole-genome comparative analysis, along with the recently sequenced Ae. sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly simiar and most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides is the closest ancestor of the wheat B subgenome and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding site leucine rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.


2021 ◽  
Vol 331 ◽  
pp. e108-e109
Author(s):  
A. Djordjevic ◽  
M. Zivkovic ◽  
J. Kuveljic ◽  
I. Koncar ◽  
I. Zivotic ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Wen-Xuan Liu ◽  
Lei Yang ◽  
Hui-Min Yan ◽  
Li-Na Yan ◽  
Xiao-Lin Zhang ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We hypothesized that germline variants in the major EMT regulatory genes (SNAIL1, ZEB1, ZEB2, TWIST1) may influence the development of HBV-related HCC. We included 421 cases of HBsAg-positive patients with HCC, 1371 cases of HBsAg-positive subjects without HCC [patients with chronic hepatitis B (CHB) or liver cirrhosis (LC)] and 618 cases of healthy controls in the case-control study. Genotype, allele, and haplotype associations in the major EMT regulatory genes were tested. Environment-gene and gene-gene interactions were analysed using the non-parametric model-free multifactor dimensionality reduction (MDR) method. The SNAIL1rs4647958T>C was associated with a significantly increased risk of both HCC (CT+CC vs. TT: OR=1.559; 95% confidence interval [CI], 1.073-2.264; P=0.020) and CHB+LC (CT+CC vs. TT: OR=1.509; 95% CI, 1.145-1.988; P=0.003). Carriers of the TWIST1rs2285681G>C (genotypes CT+CC) had an increased risk of HCC (CG+CC vs. GG: OR=1.407; 95% CI, 1.065-1.858; P=0.016). The ZEB2rs3806475T>C was associated with significantly increased risk of both HCC (Precessive =0.001) and CHB+LC (Precessive<0.001). The CG haplotype of the rs4647958/rs1543442 haplotype block was associated with significant differences between healthy subjects and HCC patients (P=0.0347). Meanwhile, the CT haplotype of the rs2285681/rs2285682 haplotype block was associated with significant differences between CHB+LC and HCC patients (P=0.0123). In MDR analysis, the combination of TWIST1rs2285681, ZEB2rs3806475, SNAIL1rs4647958 exhibited the most significant association with CHB+LC and Health control in the three-locus model. Our results suggest significant single-gene associations and environment-gene/gene-gene interactions of EMT-related genes with HBV-related HCC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251368
Author(s):  
Dania Haddad ◽  
Sumi Elsa John ◽  
Anwar Mohammad ◽  
Maha M. Hammad ◽  
Prashantha Hebbar ◽  
...  

COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains’ recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.


Author(s):  
NV Eliseeva ◽  
IV Ponomarenko ◽  
MI Churnosov

Primary open-angle glaucoma (POAG) is a complex disorder. Genetic factors play a vital part in POAG. The prevalence of POAG is gender-specific: the disorder is more often diagnosed in women. Results of the genome-wide association studies (GWAS) strongly support the association of CDKN2B-AS1 gene polymorphism with POAG. The aim was to perform the replicative study of CDKN2B-AS1 gene polymorphic loci association with POAG in women of the Central Black Earth Region, Russia. Five CDKN2B-AS1 gene single nucleotide polymorphisms (SNP), rs1063192, rs7865618, rs2157719, rs944800, and rs4977756, were genotyped in 290 female patients with POAG and 220 female controls. The differences in the haplotype block structure between the POAG patients (no haplotype blocks) and the controls (haplotype block consisting of three SNPs, rs1063192, rs7865618 and rs2157719, was detected) for the set of studied CDKN2B-AS1 SNPs were revealed using the Solid Spine algorithm (D’ > 0.8). CDKN2B-AS1 gene haplotype GGG rs1063192–rs7865618–rs2157719 is associated with POAG in women. This haplotype is considered a protective factor of the disorder (OR = 0.66; p = 0.006, рperm = 0.037).


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Patrick Devlin ◽  
Xueyuan Cao ◽  
Ansley Grimes Stanfill

Abstract Background Genetic variations in brain-derived neurotrophic factor (BDNF) are associated with various psychiatric disorders including depression, obsessive-compulsive disorder, substance use disorders, and schizophrenia; altered gene expression triggered by these genetic variants may serve to create these phenotypes. But genotype-expression interactions for this gene have not been well-studied across brain regions relevant for psychiatric disorders. Results At false discovery rate (FDR) of 10% (q < 0.1), a total of 61 SNPs were associated with BDNF expression in cerebellum (n = 209), 55 SNPs in cortex (n = 205), 48 SNPs in nucleus accumbens (n = 202), 47 SNPs in caudate (n = 194), and 58 SNPs in cerebellar hemisphere (n = 175). We identified a set of 30 SNPs in 2 haplotype blocks that were associated with alterations in expression for each of these 5 regions. The first haplotype block included variants associated in the literature with panic disorders (rs16917204), addiction (rs11030104), bipolar disorder (rs16917237/rs2049045), and obsessive-compulsive disorder (rs6265). Likewise, variants in the second haplotype block have been previously associated with disorders such as nicotine addiction, major depressive disorder (rs988748), and epilepsy (rs6484320/rs7103411). Conclusions This work supports the association of variants within BDNF for expression changes in these key brain regions that may contribute to common behavioral phenotypes for disorders of compulsion, impulsivity, and addiction. These SNPs should be further investigated as possible therapeutic and diagnostic targets to aid in management of these and other psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document