scholarly journals A fast muon tagger method for Imaging Atmospheric Cherenkov Telescopes

2020 ◽  
Vol 1548 (1) ◽  
pp. 012036
Author(s):  
L Di Venere ◽  
G Giavitto ◽  
F Giordano ◽  
R López-Coto ◽  
R Pillera

Abstract The Cherenkov Telescope Array (CTA) will be the next major observatory for Very High Energy gamma-ray astronomy. Its optical throughput calibration relies on muon Cherenkov rings. This work is aimed at developing a fast and efficient muon tagger at the camera level for the CTA telescopes. A novel technique to tag muons using the capabilities of silicon photomultiplier Compact High-Energy Camera CHEC-S, one of the design options for the camera of the small size telescopes, has been developed, studying and comparing different algorithms such as circle fitting with the Taubin method, machine learning using a neural network and simple pixel counting. Their performance in terms of efficiency and computation speed was investigated using simulations with varying levels of night sky background light. The application of the best performing method to the large size telescope camera has also been studied, to improve the speed of the muon preselection.

2021 ◽  
Vol 923 (2) ◽  
pp. 241
Author(s):  
C. B. Adams ◽  
W. Benbow ◽  
A. Brill ◽  
J. H. Buckley ◽  
M. Capasso ◽  
...  

Abstract The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period of 317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.


2016 ◽  
Vol 12 (S324) ◽  
pp. 239-240
Author(s):  
V. Fallah Ramazani ◽  
E. Lindfors ◽  
K. Nilsson

AbstractWe present the most up-to-date and complete multi-wavelength correlation analysis on luminosity properties of TeV BL Lacs. Correlation function (power law or linear) parameters are calculated based on linear regression method. Using the lower energy luminosities of a sample of 182 non-TeV BL Lacs and the generated functions, minimum level of VHE gamma-ray emission was calculated for each non-TeV BL Lacs. This multi wavelength prediction method gives us a list of best candidates to be observed with current generation of Imaging Air Cherenkov Telescopes.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844007
Author(s):  
S. Gasparyan ◽  
N. Sahakyan ◽  
P. Chardonnet

The discovery of very-high-energy gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs) by ground-based Cherenkov telescopes (HESS, MAGIC, VERITAS) provides a new view of blazar emission processes. The available data from multiwavelength observations of FSRQs, allow us to constrain the size (possibly also location) of the emitting region, magnetic field, electron energy distribution, etc., which are crucial for the understanding of the jet properties. We investigate the origin of emission from FSRQs (PKS 1510-089, PKS 1222+216 and 3C 279) by modeling the broadband spectral energy distribution in their quiescent and flaring states, using estimation of the parameter space that describes the underlying particle distribution responsible for the emission through the Markov Chain Monte Carlo (MCMC) technique.


2010 ◽  
Vol 19 (06) ◽  
pp. 1013-1022
Author(s):  
◽  
ULISSES BARRES DE ALMEIDA

The High Energy Stereoscopic System (H.E.S.S.) is a southern hemisphere array of four Imaging Atmospheric Cherenkov Telescopes observing the sky in the very-high energy gamma-ray range (E > 100 GeV ). VHE observations are an invaluable tool to study the acceleration and propagation of energetic particles in many astrophysical systems where relativistic outflows are the main drivers of the emission, such as AGNs and galactic binary systems. In this paper the main results of the H.E.S.S. observations of these objects will be reviewed, and the general picture that emerges from them will be presented. We will also comment on prospects for future investigations with H.E.S.S.-II.


2014 ◽  
Vol 788 (2) ◽  
pp. 165 ◽  
Author(s):  
K. Hada ◽  
M. Giroletti ◽  
M. Kino ◽  
G. Giovannini ◽  
F. D'Ammando ◽  
...  

2008 ◽  
Author(s):  
Diego F. Torres ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
Frank Rieger

Sign in / Sign up

Export Citation Format

Share Document