cherenkov telescopes
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 69)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xinghua Ma

Abstract The Large High Altitude Air Shower Observatory ( LHAASO ) ( Fig. 1 ) is located at Mt. Haizi (4410 m a.s.l., 600 g/cm2, 29◦ 21’ 27.56” N, 100◦ 08’ 19.66” E) in Daocheng, Sichuan province, P.R. China. LHAASO consists of 1.3 km2 array ( KM2A ) of electromagnetic particle detectors ( ED ) and muon detectors ( MD ), a water Cherenkov detector array ( WCDA ) with a total active area of 78,000 m2, 18 wide field-of-view air Cherenkov telescopes (WFCTA ) and a newly proposed electron-neutron detector array ( ENDA ) covering 10,000 m2. Each detector is synchronized with all the other through a clock synchronization network based on the White Rabbit protocol. The observatory includes an IT center which comprises the data acquisition system and trigger system, the data analysis facility. In the following of this Chapter, all the above mentioned components of LHAASO will be briefly described, together with infrastructure which is a fundamental component of the LHAASO observatory.


2021 ◽  
Vol 923 (2) ◽  
pp. 241
Author(s):  
C. B. Adams ◽  
W. Benbow ◽  
A. Brill ◽  
J. H. Buckley ◽  
M. Capasso ◽  
...  

Abstract The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period of 317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.


2021 ◽  
Vol 922 (2) ◽  
pp. 251
Author(s):  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
M. Artero ◽  
...  

Abstract PSR J0218+4232 is one of the most energetic millisecond pulsars known and has long been considered as one of the best candidates for very high-energy (VHE; >100 GeV) γ-ray emission. Using 11.5 yr of Fermi Large Area Telescope (LAT) data between 100 MeV and 870 GeV, and ∼90 hr of Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observations in the 20 GeV to 20 TeV range, we searched for the highest energy γ-ray emission from PSR J0218+4232. Based on the analysis of the LAT data, we find evidence for pulsed emission above 25 GeV, but see no evidence for emission above 100 GeV (VHE) with MAGIC. We present the results of searches for γ-ray emission, along with theoretical modeling, to interpret the lack of VHE emission. We conclude that, based on the experimental observations and theoretical modeling, it will remain extremely challenging to detect VHE emission from PSR J0218+4232 with the current generation of Imaging Atmospheric Cherenkov Telescopes, and maybe even with future ones, such as the Cherenkov Telescope Array.


2021 ◽  
Vol 923 (2) ◽  
pp. 194
Author(s):  
Alice K. Harding ◽  
Christo Venter ◽  
Constantinos Kalapotharakos

Abstract Air-Cherenkov telescopes have detected pulsations at energies above 50 GeV from a growing number of Fermi pulsars. These include the Crab, Vela, PSR B1706−44, and Geminga, with the first two having pulsed detections above 1 TeV. In some cases, there appears to be very-high-energy (VHE) emission that is an extension of the Fermi spectra to high energies, while in other cases, additional higher-energy spectral components that require a separate emission mechanism may be present. We present results of broadband spectral modeling using global magnetospheric fields and multiple emission mechanisms that include synchro-curvature (SC) and inverse Compton scattered (ICS) radiation from accelerated particles (primaries) and synchrotron self-Compton (SSC) emission from lower-energy pairs. Our models predict three distinct VHE components: SC from primaries whose high-energy tail can extend to 100 GeV, SSC from pairs that can extend to several TeV, and ICS from primary particles accelerated in the current sheet that scatter pair synchrotron radiation, which appears beyond 10 TeV. Our models suggest that H.E.S.S.-II and MAGIC have detected the high-energy tail of the primary SC component that produces the Fermi spectrum in Vela, Geminga, and PSR B1706−44. We argue that the ICS component peaking above 10 TeV from Vela has been seen by H.E.S.S. Detection of this emission component from the Crab and other pulsars is possible with the High Altitude Water Cherenkov Observatory and Cherenkov Telescope Array, and will directly measure the maximum particle energy in pulsars.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyuan Huang ◽  
Qiang Yuan ◽  
Yi-Zhong Fan

AbstractCosmic rays are important probe of a number of fundamental physical problems such as the acceleration of high and very high energy particles in extreme astrophysical environments. The Galactic center is widely anticipated to be an important cosmic-ray source and the observations of some Imaging Atmospheric Cherenkov Telescopes did successfully reveal a component of TeV-PeV cosmic rays in the vicinity of the Galactic center. Here we report the identification of GeV-TeV cosmic rays in the central molecular zone with the γ-ray observations of the Fermi Large Area Telescope, whose spectrum and spatial gradient are consistent with that measured by the Imaging Atmospheric Cherenkov Telescopes but the corresponding cosmic-ray energy density is substantially lower than the so-called cosmic-ray sea component, suggesting the presence of a high energy particle accelerator at the Galactic center and the existence of a barrier that can effectively suppress the penetration of the particles from the cosmic-ray sea to the central molecular zone.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 98
Author(s):  
Giovanni La Mura ◽  
Ulisses Barres de Almeida ◽  
Ruben Conceição ◽  
Alessandro De Angelis ◽  
Francesco Longo ◽  
...  

Recent observations have confirmed that Gamma-Ray Burst (GRB) afterglows produce Very High-Energy radiation (VHE, E>100GeV). This highly anticipated discovery opens new scenarios in the interpretation of GRBs and in their role as probes of Extragalactic Background Light (EBL) and Lorentz Invariance Violation (LIV). However, some fundamental questions about the actual nature of VHE emission in GRBs and its evolution during the burst are still unsolved. These questions will be difficult to address, even with future imaging Cherenkov telescopes, such as the Cherenkov Telescope Array (CTA). Here we investigate the prospects of gamma-ray sky monitoring with Extensive Air Showers arrays (EAS) to address these problems. We discuss the theoretical aspects connected with VHE radiation emission and the implications that its temporal evolution properties have on the interpretation of GRBs. By revisiting the high-energy properties of some Fermi-LAT detected GRBs, we estimate the typical fluxes expected in the VHE band and compare them with a range of foreseeable instrument performances, based on the Southern Wide Field-of-view Gamma-ray Observatory concept (SWGO). We focus our analysis on how different instrument capabilities affect the chances to explore the burst onset and early evolution in VHE, providing invaluable complementary information with respect to Cherenkov telescope observations. We show that under the assumption of conditions already observed in historical events, the next-generation ground monitoring detectors can actually contribute to answer several key questions.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 421
Author(s):  
Mathieu de Naurois

Thirty years after the discovery of the first very-high-energy γ-ray source by the Whipple telescope, the field experienced a revolution mainly driven by the third generation of imaging atmospheric Cherenkov telescopes (IACTs). The combined use of large mirrors and the invention of the imaging technique at the Whipple telescope, stereoscopic observations, developed by the HEGRA array and the fine-grained camera, pioneered by the CAT telescope, led to a jump by a factor of more than ten in sensitivity. The advent of advanced analysis techniques led to a vast improvement in background rejection, as well as in angular and energy resolutions. Recent instruments already have to deal with a very large amount of data (petabytes), containing a large number of sources often very extended (at least within the Galactic plane) and overlapping each other, and the situation will become even more dramatic with future instruments. The first large catalogues of sources have emerged during the last decade, which required numerous, dedicated observations and developments, but also made the first population studies possible. This paper is an attempt to summarize the evolution of the field towards the building up of the source catalogues, to describe the first population studies already made possible, and to give some perspectives in the context of the upcoming, new generation of instruments.


Sign in / Sign up

Export Citation Format

Share Document