scholarly journals Saturation temperature effect on heat transfer coefficient during convective boiling in microfin tubes

2020 ◽  
Vol 1599 ◽  
pp. 012052
Author(s):  
L P M Colombo ◽  
A Lucchini ◽  
T N Phan ◽  
L Molinaroli ◽  
A Niro ◽  
...  
Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Author(s):  
Nae-Hyun Kim ◽  
Young-Sup Sim ◽  
Chang-Keun Min

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 200 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


2021 ◽  
Author(s):  
Thanh Nhan Phan ◽  
Van Hung Tran

Understanding the Heat transfer performance of refrigerant for convective boiling in horizontal microfin tube and smooth tube is place an importance role on the designing of evaporator, the main equipment on refrigeration system. Reviewing the general concept especially the theory of boiling in the tube, the formation of the flow pattern map, the calculating procedure for heat transfer coefficient and pressure drop during boiling process of refrigerant in microfin tube. Besides, a typical example will be presented more detail in step by step to define the heat transfer coefficient and pressure drop for one working condition to estimate the data results without doing experiments.


1993 ◽  
Vol 115 (3) ◽  
pp. 680-689 ◽  
Author(s):  
K. Murata ◽  
K. Hashizume

Forced convective boiling of nonazeotropic mixtures inside horizontal tubes was investigated experimentally. The heat transfer coefficient and pressure drop of pure refrigerant R123 and a mixture of R123 and R134a were measured in both a smooth tube and a spirally grooved tube. The heat transfer coefficient for the mixture was found to be lower than that for an equivalent pure refrigerant with the same phsycial properties, not only in the boiling-dominant region but also in the convection-dominant region. On the basis of this experiment, correlations were proposed for heat transfer coefficients in smooth and grooved tubes; the reduction in heat transfer coefficient for the mixture is attributed to the mixture effects on nucleate boiling and to the heat transfer resistance in the vapor phase. This heat transfer resistance is caused by the sensible heating of the vapor phase accompanying the rise in saturation temperature. These correlations are able to predict the heat transfer data within ± 20 percent


2001 ◽  
Author(s):  
S. I. Haider ◽  
Yogendra K. Joshi ◽  
Wataru Nakayama

Abstract The study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. Most available models deal with two-phase thermosyphons with counter-current circulation within a closed, vertical, wickless heat pipe. The present research focuses on CLTPTs for electronics cooling that face more complex two-phase flow patterns than the vertical heat pipes, due to closed loop geometry and smaller tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the chip temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Vidushi Chauhan ◽  
Manoj Kumar ◽  
Anil Kumar Patil

Abstract The nucleate pool is a useful technique of heat dissipation in a variety of thermal applications. This study investigates the effect of the gridded metal surface (GMS) with and without protrusions on the heat transfer from a surface maintained at a temperature above the saturation temperature of water. The experimental data have been collected pertaining to boiling heat transfer at atmospheric pressure by varying the grid size of gridded metal surface with protrusions from 6 mm to 22.5 mm placed over a boiling surface having microporous coating. The mean particle diameter of coating is varied as 11, 24, and 66 μm during the experimentation. It is observed that the increase in the boiling heat transfer coefficient of the aluminum disk with GMS with protrusions of grid size 11.5 mm compared to that of the smooth boiling surface is found to be 10.7%. Furthermore, the effect of GMS having protrusions with coated surface on the heat transfer is studied. The results showed that by using GMS having protrusions and with coated surface, the heat transfer is further enhanced. The boiling heat transfer coefficient obtained in case of GMS with protrusions (grid size = 11.5 mm) and microporous-coated surface (dm = 66 μm) shows the maximum enhancement of 39.93% in comparison to the smooth surface.


Author(s):  
Murali Krishnan R. ◽  
Zain Dweik ◽  
Deoras Prabhudharwadkar

This paper provides an extension of the previously described [1] formulation of a one-dimensional model for steady, compressible flow inside a channel, to the steam turbine application. The major challenge faced in the network simulation of the steam turbine secondary system is the prediction of the condensation that occurs during the engine start-up on the cold parts that are below the saturation temperature. Neglecting condensation effects may result in large errors in the engine temperatures since they are calculated based on the boundary conditions (heat transfer coefficient and bulk temperature) which depend on the solution of the network analysis. This paper provides a detailed formulation of a one-dimensional model for steady, compressible flow inside a channel which is based on the solution of two equations for a coupled system of mass, momentum and energy equations with wall condensation. The model also accounts for channel area variation, inclination with respect to the engine axis, rotation, wall friction and external heating. The formulation was first validated against existing 1D correlation for an idealized case. The wall condensation is modeled using the best-suited film condensation models for pressure and heat transfer coefficient available in the literature and has been validated against the experimental data with satisfactory predictions.


Sign in / Sign up

Export Citation Format

Share Document