ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
Latest Publications


TOTAL DOCUMENTS

194
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

0791842924, 0791838137

Author(s):  
Heyun Liu ◽  
Xiaohui Ma

Atmospheric ice accretion on structures is a problem of fundamental importance to a number of industries. Examples of engineering problems caused by ice accretion involving aircraft, power transmission lines, telecommunication towers, electrical railway contact-wires, and other structures. Under atmospheric icing conditions two basic types of ice may form; rime or glaze. The supercooled micro-droplets in clouds are an important factor in icing. The objective of this study was to develop a new experimental method to investigate a single supercooled micro-droplet freezing process, in order to better understand the mechanism of rime or glaze ice accretion. The experimental device and principles are described in this paper. The experimental set has two small cold rooms, which is separated by a board with a central hole. A droplet with diameter of 15∼40 μm, temperature of 0∼−5°C was levitated in the cold air stream by electrostatic force. A CCD camera tracked its trace. The air temperature is from 0∼−10°C, the micro-droplet diameter is from 15∼40μm, and its temperature is from 0∼−5°C in the experimental study. This article focused on the experimental set and the experimental principles, and the next article will focus on the experimental data analysis.


Author(s):  
Sanjeeva Witharana ◽  
Haisheng Cheng ◽  
Yulong Ding

This paper presents an experimental study on the rheology and steady state natural convective heat transfer of suspensions of Carbon nanotubes (CNT) in the Water - Ethylene Glycol (WEG) base liquid, heated in a cylindrical cavity. Two series of experiment were performed in two orientations of the central axis of the cavity; vertical, and, horizontal. In vertical axis experiments, the heat was supplied from the bottom. The cylindrical cavity was made out of Aluminium, 10mm in height and 240mm in diameter. The heat input was 215W/m2. The CNTs used had an aspect ratio of ∼150. There were six suspensions investigated in either series of tests; CNT 0.1wt%, and EG 0, 10, 25, 50, 75 & 100wt%. It was found that the vertical axis orientation deteriorates heat transfer in all cases. However for horizontal orientation, there is a spectacular enhancement of up to 83% depending upon the EG concentration. The results also show that WEG-CNT suspension demonstrates non-Newtonian behaviour, which augments with increasing EG concentration.


Author(s):  
Guillermo E. Valencia ◽  
Miguel A. Ramos ◽  
Antono J. Bula

The paper describes an experimental procedure performed to obtain the convective heat transfer coefficient of Al2O3 nanofluid working as cooling fluid under turbulent regimen through arrays of aluminum microchannel heat sink having a diameter of 1.2 mm. Experimental Nusselt number correlation as a function of the volume fractions, Reynolds, Peclet and Prandtl numbers for a constant heat flux boundary condition is presented. The correlation for Nusselt number has a good agreement with experimental data and can be used to predict heat transfer coefficient for this specific nanofluid, water/Al2O3. Furthermore, the pressure drop is also analyzed considering the different nanoparticles concentration.


Author(s):  
Masahiko Shibahara ◽  
Kosuke Inoue ◽  
Kiyomori Kobayashi

The classical molecular dynamics simulation was conducted in order to clarify the effects of structural clearances in nanometer scale on thermal resistance at a liquid-solid interface. A liquid molecular region confined between the solid walls, of which the interparticle potential was Lennard-Jones type, was employed as a calculation system. The solid walls consisted of three atomic layers where the temperature of the middle layer was controlled by the Langevin method. Heat flux in the system was calculated numerically by integrating the forces that acted on the temperature controlled atoms by the Langevin method. The temperature jump between the solid wall and the liquid molecular region was calculated numerically. The thermal resistance at a liquid-solid interface was calculated numerically with changing the surface structural clearances in nanometer scale. Temperature gradient and liquid density were also changed as calculation parameters. With changing the surface structural clearances from 0nm to 2.5nm the thermal resistance at the interface once decreased and became the minimum value when the structural clearances were between 0.6 to 1.0 nm. The thermal resistance between the solid and the liquid increased when the structural clearances were more than 1.0nm. With the increase of the liquid density the thermal resistance between the solid and the liquid substantially decreased regardless of the temperature gradient and the surface structures in nanometer scale.


Author(s):  
Emadaldin Moeendarbary ◽  
K. Y. Lam ◽  
T. Y. Ng

Dissipative Particle Dynamics (DPD) is a mesoscopic fluid modeling method, which facilitates the simulation of the statics and dynamics of complex fluid systems at physically interesting length and time scales. Currently, there are various applications of DPD, such as colloidal suspensions, multi-phase flow, rheology of polymer chains, DNA macromolecular suspension, etc., which employ this technique for their numerical simulation. The DPD technique is capable of modeling macroscopic properties of the bulk flow very well, but difficulties arise if the flows are confined through wall-bounded regions, or when different boundaries simultaneously exist in the simulation domain. These boundaries cause negative effects on the macroscopic temperature, density and velocity profiles, as well as the shear stress and pressure distributions. In particular, the interaction of DPD particles with solid boundaries causes large density fluctuations at the near wall regions. This density distortion leads to pronounced fluctuations in the pressure and shear stress, which are not actually present. To overcome these serious deficiencies, we introduce a new method in this work, which uses a combination of randomly distributed wall particles and a novel reflection adaptation at the wall. This new methodology is simple to implement and incurs no additional computational cost. More importantly, it does not cause any distortion in the macroscopic properties. This novel reflection adaptation is a novel version of the bounce back reflection, which we shall term the bounce-normal reflection. The most important characteristic of this method is that it reduces density fluctuations near the boundaries without affecting the velocity and temperature profiles. This new method is easily applicable to any wall-bounded problem with stationary boundaries and it has a very good consistency with macroscopic features. The eventual objective of this numerical development work is to investigate suspension flow through micro/nano channels of fluidic NEMS/MEMS devices, with applications to DNA and protein separation. These micro/nano channel devices, consisting of many entropic traps, are designed and fabricated for the separation of proteins and long DNA molecules.


Author(s):  
J. S. Wang ◽  
Y. Qiu ◽  
L. Y. Li

Small-scale concave spherical pits, which have a special effect on heat transfer enhancement and turbulent drag reduction, are investigated by numerical simulation in detail. Two kinds of small-scale concave pits structures are designed on surface of a plate, which are located in the bottom of a rectangle channel. The characteristics of heat transfer and flow in channel are investigated and compared with a same channel with plate bottom by means of LES. Flow structure and temperature distribution near the pits are analyzed. The numerical simulation results indicate that the concave spherical pits disturb the flow field and vortex is induced by the pits. The turbulent coherent structure is affected by the induced vortex. The numerical simulation indicates that small scale pit can generate the vortex in couple. The range of vortex is accord with the array of small scale pit. The small scale pit can enhance the intensity of vortex. As a result, the temperature field near the pit is changed with generation of the vortex. The heat transfer mechanism on plate with small scale concave spherical pit is summarized.


Author(s):  
Amador M. Guzma´n ◽  
Andre´s J. Di´az ◽  
Luis E. Sanhueza ◽  
Rodrigo A. Escobar

The flow characteristics of a rarified gas have been investigated in microgrooved channels. The governing Boltzmann Transport Equation (BTE) is solved by the Lattice-Boltzmann method (LBM) for the Knudsen number range of 0.01–0.1. First, the compressibility and rarified effects are investigated in a plane channel by performing numerical simulations for different Knudsen numbers, pressure ratio and accommodation coefficients with the objective of validating the computational code used in this investigation and determining the transition characteristics from the macro to microscale. The numerical predictions are compared to existing analytical and numerical results. Then, numerical simulations are performed for microgrooved channels for the Knudsen numbers range of [0.01–0.1]. Different meshes are used for preserving numerical stabilities and obtaining accurate enough numerical results. For the microgrooved channel configuration, the fluid characteristics are determined in terms of pressure ratio and Knudsen numbers. The numerical results are compared to existing analytical predictions and numerical results obtained from plane channel and one cavity simulations.


Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2, delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.


Author(s):  
Yung-Chiang Chung ◽  
Chuan-You Ye ◽  
Li-Wei Lai

This paper presents the effect of temperature distributions in different heaters and channels on DNA amplification for polymerase chain reaction biochip. We utilized the Micro-Electro-Mechanical System to complete biochip accuracy. The TPX (Poly-4-methyl-pentene-1) was used as the polymer material. The microchip composed of two parts. One is the heater and temperature sensor on a top cover, the other is the microchannel and reaction chamber on a bottom substrate. Then we designed two kinds of chip materials: 1. a glass cover and a TPX substrate, 2. a TPX cover and a TPX substrate. Temperature is the most important in PCR, so the more uniform one is better. And we designed two kinds of heater. According to heat conduction simulation, we can find the best heater pattern. The simulation result is that the design of long inside distance and short outside distance between heater columns was the best one. The reagent of 10 μL was repeated twenty-five cycles to complete PCR process. The temperature controller could reach the speed of heating 20° C /sec and the speed of cooling 5°C /sec. Thus the PCR process could be achieved for twenty-five cycles within 35 minutes. Finally we used the instruments to check DNA amplification result qualitatively and quantitatively. The DNA amplification length was 108 bps. The DNA amplification of long inside distance and short outside distance between heater columns was 90.17 ng/μL, and was larger 12 ng/μL than that of equally distances. Excellent correlation between simulation analysis and experimental result was obtained in this study.


Author(s):  
Hiroshi Yamada ◽  
Kousuke Yasuno ◽  
Kensuke Fujisaki ◽  
Hiroshi Ishiguro

Identifying changes in the mechanical behavior of blood vessels subjected to freezing and thawing, such as occur with cryopreservation, are of key importance. Excising pairs of fresh ring specimens from identical porcine thoracic aortas (n = 8 for each cooling rate), we carried out uniaxial tensile loading and unloading tests over the physiological stress range (first and second tests) and performed a loading test until the breaking point within the range of a load cell (third test). After the first test, one specimen of the pair was frozen at −80°C at a cooling rate of −1°C or −50°C/min and thawed, while the other was held at 5°C as a control. At both cooling rates, for the specimens subjected to freezing, the ratios of the tangential modulus in the stress-strain curve (between 130 and 150 kPa) in the second test to that in the first test differed significantly (p < 0.01) from the respective ratios of the control specimens. We formulated a mathematical model of the stress–strain relationship considering elastic and collagen fibers and an incompressible fluid phase. We evaluated the working hypothesis that collagen fibers reduce their extensibility either by hardening as a mechanical change or by shortening as a geometric change. We attributed this response to the formation of dehydration-induced cross-linking in collagen molecules at the microscopic level.


Sign in / Sign up

Export Citation Format

Share Document