scholarly journals Performance computing of an open cycle micro gas turbine powerplant using data aided modeling and simulation

2021 ◽  
Vol 1745 (1) ◽  
pp. 012098
Author(s):  
A V Thomas Jayachandran ◽  
A Y Tkachenko ◽  
H H Omar ◽  
A Krishnakumar
Author(s):  
D. P. Bakalis ◽  
A. G. Stamatis

The objective of this work is the development of a simulation model for a hybrid Solid Oxide Fuel Cell (SOFC)/Micro Gas Turbine (MGT) system, flexible and robust enough, capable to predict the system performance under various operating conditions. The hybrid system consists of a high temperature SOFC, based on a tubular configuration developed by Siemens Power Generation Inc, and a recuperated small gas turbine (GT) validated using data for the Capstone C30. The design and off-design performance of the system is examined by means of performance maps. Moreover, operating parameters such as fuel utilization factor, steam to carbon ratio and current density are varied over a wide range and the influence on system performance is studied. The optimum operating conditions are discussed with regard to overall system performance under part load operation. The results show that high electrical efficiencies can be achieved making these systems appropriate for distributed generation applications.


2020 ◽  
Author(s):  
Francesco Rovense ◽  
Miguel Ángel Reyes-Belmonte ◽  
Manuel Romero ◽  
José González-Aguilar

2008 ◽  
Vol 3 (1) ◽  
pp. 204-215
Author(s):  
Kousaku YOTORIYAMA ◽  
Shunsuke AMANO ◽  
Hidetomo FUJIWARA ◽  
Tomohiko FURUHATA ◽  
Masataka ARAI

2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


Sign in / Sign up

Export Citation Format

Share Document