scholarly journals Combined heat/cooling and power generation using hybrid micro gas turbine in a CST plant for a residential off-grid application

2020 ◽  
Author(s):  
Francesco Rovense ◽  
Miguel Ángel Reyes-Belmonte ◽  
Manuel Romero ◽  
José González-Aguilar
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Saad Alshahrani ◽  
Abraham Engeda

Abstract A performance assessment was conducted for a solar–biogas hybrid micro gas turbine integrated with a solar power tower technology. The considered system is a solar central receiver integrated with a micro gas turbine hybrid with biogas fuel as a backup. The Brayton cycle is designed to receive a dual integrated heat source input that works alternatively to keep the heat input to the system continuous. The study considered several key performance parameters including meteorological condition effects, recuperator existence and effectiveness, solar share, and gas turbine components performance. This study shows a significant reduction in CO2 emissions due to the utilization and hybridization of the renewable energies, solar, and biogas. The study reveals that the solar–biogas hybrid micro gas turbine for 100-kW power production has a CO2 emission less than a conventional fossil fuel gas turbine. Finally, the study shows that the method of power generation hybridization for solar and biogas gas turbines is a promising technique that leads to fuel-savings and lower CO2 emissions.


2018 ◽  
Vol 225 ◽  
pp. 04012
Author(s):  
Firdaus Basrawi ◽  
A.I.M. Al-Anati ◽  
Thamir K. Ibrahim ◽  
Mohd Hazwan Yusof ◽  
A.A. Razak ◽  
...  

Solar farm could not penetrate grid at substantial amount because it could disturb the grid operation due to its fluctuation output. This, the objective of this study is to theoretically analyze the power output stabilization of a solar farm by integration of Micro Gas Turbine (MGT). A 1MW scale of solar farm was first designed according to IEC 60364-5-52:2003, MS281837 and AMBO Chart method. Then, designed solar farm and MGT were modelled and simulated Simulink. In this study, both system need to stabilize power output at 800 kW throughout the year. It was found that it is possible to balance the power output of the solar farm to have constant power output throughout the year at 800 kW. However, all MGTs frequently operated at partial load that decreased their efficiency. Thus, it is possible to solve the solar farm problem with the technique, but further investigation the environmental and economic impact in comparison with a conventional power generation and a solar farm only is needed.


2019 ◽  
Author(s):  
Saad Alshahrani ◽  
Abraham Engeda

Abstract Solar thermal power is considered one of the most promising renewable energy resources that has witnessed a great technological improvement in the last two decades. Saudi Arabia has very intensive solar radiation because it is located in the sun belt region, which has led it to become one of the largest solar energy producers. In this paper, detailed exergy analysis of a solar-biogas hybrid micro gas turbine for power generation is presented. The system is driven by a central receiver and biogas as backup based on the hybridization technique. The net power output of the system is set to 100 kW. This study demonstrates that the highest exergy destruction occurs in the recuperatore and ceramic heat exchanger, about 22.6% and 22.5%, respectively, and that is due to the high entropy generation and the irreversibilities in these components. Moreover, the exergy destruction for all system components was examined at different environment temperatures. The study revealed that the exergy destruction for compressor, regenerator, and receiver decreases with an increase in the environment temperature, but the exergy destruction increases for turbine and heliostats field.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 1242-1258 ◽  
Author(s):  
Jiandong Duan ◽  
Junjie Liu ◽  
Qian Xiao ◽  
Shaogui Fan ◽  
Li Sun ◽  
...  

2015 ◽  
Vol 2015.12 (0) ◽  
pp. _ICOPE-15--_ICOPE-15-
Author(s):  
Osamu KURATA ◽  
Norihiko IKI ◽  
Takayuki MATSUNUMA ◽  
Takahiro INOUE ◽  
Masato SUZUKI ◽  
...  

Author(s):  
Norihiko Iki ◽  
Osamu Kurata ◽  
Takayuki Matsunuma ◽  
Takahiro Inoue ◽  
Taku Tsujimura ◽  
...  

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. Over 40kW of power generation was achieved by firing ammonia gas only. Over 40kW of power generation was also achieved by firing mixture of ammonia and methane. However ammonia gas supply increases NOx in the exhaust gas dramatically. NOx concentration in the exhaust gas of gas turbine reached at over 600ppm. In the case of the gas turbine operation firing kerosene-ammonia with 31kW of power generation at 75,000rpm of rotating speed, the LHV (Lower Heating Value) ratio of ammonia to the total supplied fuel was changed from 0% to 100% in detail. NO emission increases rapidly to around 400ppm with ammonia at 7% of LHV ratio of ammonia. Then NO emission increases gradually to 600ppm with ammonia at 27% of LHV ratio of ammonia. NO emission has the peak around 60% of LHV ratio of ammonia. NO emission decreases below 500ppm at 100% of LHV ratio of ammonia. The gas turbine operation firing methane-ammonia with 31kW of power generation at 75,000rpm of rotating speed was also tried. NO emission increases rapidly to around 470ppm with ammonia at 7% of LHV ratio of ammonia. Then NO emission increases gradually to 600ppm with ammonia around 30% of LHV ratio of ammonia. NO emission has the peak at 65% of LHV ratio of ammonia. NO emission decreases below 500ppm at 100% of LHV ratio of ammonia. Since the ammonia flame in the prototype combustor seems to be inhomogeneous, ammonia combustion in the prototype combustor may have high NOx region and low NOx region. Therefore there is a possibility of low-NOx combustion. Flame observation was planned to know combustion state for improvement toward the low NOx combustor. Flame observation from the combustor exit was available by extending the combustor exit with the adaptor of the bent coaxial tubes and the quartz window. Swirling flames of ammonia, methane and methane-ammonia were observed near the center axis of the combustor. Flame observation at 39.1kW of power generation was succeeded. In the case of the flame observation, fuel consumption increased due to increase of the heat loss from the combustor. The emissions of NO and NH3 clearly depend on the combustion inlet temperature at 75,000rpm of rotating speed. The emissions of NO and NH3 in the case of the flame observation setting corresponds to the emission in the case of the normal setting at the condition that the power output is 11.2kW lower.


2004 ◽  
Vol 126 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Hideyuki Uechi ◽  
Shinji Kimijima ◽  
Nobuhide Kasagi

Hybrid systems, which are based on a micro gas turbine (μGT) and a solid oxide fuel cell (SOFC), are expected to achieve much higher efficiency than traditional μGT’s. In this paper, the effects of cycle design parameters on the performance and feasibility of a μGT-SOFC hybrid system of 30 kW power output are investigated. It is confirmed that the hybrid system is much superior to a recuperated gas turbine in terms of its power generation efficiency and aptitude for small distributed generation. General design strategy is found that less direct fuel input to a combustor as well as higher recuperator effectiveness leads to higher generation efficiency, while higher steam-carbon ratio moderates requirements for the material strength. The best possible conceptual design of a 30-kW μGT-SOFC hybrid system is shown to give power generation efficiency over 65% (lower heating value).


Author(s):  
A. Cavarzere ◽  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
A. Vaccari ◽  
...  

The application of bio-fuels in automotive, power generation and heating applications is constantly increasing. However, the use of straight vegetable oil (pure or blended with diesel) to feed a gas turbine for electric power generation still requires experimental effort, due to the very high viscosity of straight vegetable oils. In this paper, the behavior of a Solar T-62T-32 micro gas turbine fed by vegetable oils is investigated experimentally. The vegetable oils are supplied to the micro gas turbine as blends of diesel and straight vegetable oils in different concentrations, up to pure vegetable oil. This paper describes the test rig used for the experimental activity and reports some experimental results, which highlight the effects of the different fuels on micro gas turbine performance and pollutant emissions. Moreover, an identification model is set up to predict the behavior of the considered gas turbine, when fuelled by vegetable oil, and the sensitivity of micro gas turbine thermodynamic measurements and emissions is quantitatively established.


Sign in / Sign up

Export Citation Format

Share Document