scholarly journals Analysis on the Influence of Wind Power Participating in Frequency Modulation on Low-frequency Oscillation in Yunnan Power Grid

2021 ◽  
Vol 1748 ◽  
pp. 052030
Author(s):  
Lei Yang ◽  
Jingye Gao ◽  
Zun Ma ◽  
Wei Huang ◽  
Dan Zhang ◽  
...  
Author(s):  
Nguyen Hoang Mai ◽  
Tran van Dung

The low frequency oscillation in the electrical generator connect to power grid is an important problem to control systems, especially in the gas turbine generators with high speed. The oscillation makes affect to life time, finance of operating and effect of energy process. There are many cause of the oscillation in governor speed control of power plants. They use PSS to do damping low frequency oscillation in recently [11], [12], [13], [14], [22], [23]. So PSS usually does process with delay cycle time, therefore it makes effect isn’t good result. This paper presents a method using linear in the gas turbine generator, which connects to power grid. By observe affect action of local oscillation of the power, study finds key point of oscillation time. From that, we take out decision to do prediction of damping in system and supply signal in to PSS to reduce damaging of this oscillation. Simulation results explain difference action of the system with linear observer and system without linear observer.


2013 ◽  
Vol 391 ◽  
pp. 271-276
Author(s):  
Peng Li ◽  
Ning Bo Wang ◽  
De Zhi Chen ◽  
Xiao Rong Zhu ◽  
Yun Ting Song

Increasing penetration level of wind power integration has a significant impact on low-frequency oscillations of power systems. Based on PSD-BPA simulation software, time domain simulation analysis and eigenvalue analysis are employed to investigate its effect on power system low-frequency oscillation characteristic in an outward transmitting thermal generated power bundled with wind power illustrative power system. System damping enhances markedly and the risk of low-frequency oscillation reduce when the generation of wind farm increase. In addition, dynamic reactive power compensations apply to wind farm, and the simulation result indicates that it can improve dynamic stability and enhance the system damping.


2021 ◽  
Vol 252 ◽  
pp. 02001
Author(s):  
Ping He ◽  
Mingming Zheng ◽  
Zhao Li ◽  
Qiyuan Fang ◽  
Xiaopeng Wu

The new energy represented by strong random wind power connecting to the power system may make the problem of inter-area low-frequency oscillation more serious. In this paper, a DFIG-PSS controller based on virtual impedance is constructed to solve the low-frequency oscillation problem in the wind power system. The step response of PSS-VI was carried out to test the effect of the controller to verify the advantages of PSS-VI than traditional PSS. The input signal of PSS-VI which is a controller based on PSS installed virtual impedance is the active power of DFIG. The output signal of PSS-VI is added to the reactive power control loop of rotor side controller of DFIG. DFIG-PSS-VI was built in Digsilent/Powerfactory software, and the simulation was carried out on the system of 4 machines and 2 regions. It is verified that PSS-VI can improve the low-frequency oscillation of wind power system.


2017 ◽  
Vol 2017 (13) ◽  
pp. 1299-1306 ◽  
Author(s):  
Yushu Sun ◽  
Hua Ye ◽  
Xiaozhe Sun ◽  
Fufeng Miao

Sign in / Sign up

Export Citation Format

Share Document